
Peer Effects in Electric Car Adoption:
Evidence from Sweden

Sebastian Tebbe∗

March 20, 2025

Abstract

I study peer effects in the diffusion of electric cars in Sweden among co-workers, rela-
tives, and neighbors. To identify peer effects, I exploit a shift-share IV design linking
expiring leasing contract renewals (i.e., shift) with the propensity to acquire an electric
car based on individual traits (i.e., share). One new electric car causes, in the next
quarter, .094 new electric car acquisitions in the workplace, .023 in the family, and .22
in the neighborhood. These peer effects displace fossil fuel cars and are associated with
the transmission of information. I develop a framework highlighting how incorporating
peer effects shifts optimal environmental policies.
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I. Introduction

How to promote a shift toward new environmentally-friendly technology is a central issue in
economic and policy debates over the green energy transition. The transport industry ac-
counts for about a quarter of Europe’s greenhouse gas emissions and is the only sector where
emissions have not decreased since 1990 (European Environment Agency, 2023). Reducing
transport emissions is pivotal to meeting the EU’s emissions targets and ensuring progress
toward its 2050 objective of climate neutrality. To transition to low-emission mobility, Eu-
rope plans to replace vehicles powered by the combustion of fossil fuels with electric vehicles
(EV). However, the market penetration of EVs remains relatively low and insufficient to
reach the set EU emission targets.

A key mechanism in the diffusion of new technologies and practices is social interactions
with peers (Griliches, 1957; Bass, 1969).1 Early adopters of new technologies can generate
positive externalities among their peers, which impacts the technology’s diffusion process.
Therefore, environmental policies that aim to stimulate the diffusion of new, environmentally-
friendly technologies must incorporate how peer effects influence the adoption decision in
social networks.

My primary contribution is to provide causal estimates of peer effects on adopting
a crucial new green technology – electric cars2 – within peer groups that span essential
aspects of life: workplace, family, and neighborhood.3 The peer effects are substantial and
economically meaningful: On average, one new electric car causes, in the next quarter, an
additional .094 new electric car acquisitions in the workplace, .023 in the family, and .22
in the neighborhood. The estimated peer effects for electric cars are considerably stronger
than for petrol or diesel cars, highlighting the significance of peer effects of new technologies
in the automobile market. The results are robust to alternative functional specifications,
sample restrictions, placebo tests, and peer group dynamics.

1Social learning has been established as an essential determinant of early technology adoption in numerous
economic settings, primarily in developing countries. Agriculture (Foster & Rosenzweig, 1995; Conley &
Udry, 2010), deworming programs (Kremer & Miguel, 2007), new crop choices (Bandiera & Rasul, 2006),
and fertilizer adoption (Duflo et al., 2011) are a few examples.

2I aggregate hybrid electric, plug-in, and battery electric cars into one outcome variable and refer to
these as “electric cars” throughout the paper.

3The idea that people learn from their peers has been examined in settings ranging from education
(Sacerdote, 2001; Graham, 2008; List et al., 2020), consumption behavior (De Giorgi et al., 2020; Bailey
et al., 2022), participation in welfare programs (Dahl et al., 2014; Hesselius et al., 2009; Persson et al.,
2021; Asphjell et al., 2013), to criminal behavior (Bhuller et al., 2018; Dustmann & Landerso, 2021), and
charitable giving (DellaVigna et al., 2012). In the environmental realm, peer effects have been identified
in the adoption of solar photovoltaic panels (Bollinger & Gillingham, 2012; Graziano & Gillingham, 2015),
hybrid vehicles (Narayanan & Nair, 2013; Heutel & Muehlegger, 2015; Zhu & Liu, 2013; Jansson et al., 2017;
Chakraborty et al., 2022), and water conservation (Bollinger et al., 2020).

1



To address whether the results correspond to a substitution from other vehicle fuel types,
I estimate how one new peer electric car influences the adoption of new petrol and diesel cars
relative to a peer group that did not receive a new electric car at the renewal threshold. The
results show that new electric cars initiated through peer effects pull demand from diesel and
petrol cars. This implies that peer effects accelerate the adoption of new electric cars and
reduce the demand for competing technologies (such as fossil fuel cars). The estimated peer
effects, however, may result from individuals pulling forward planned electric car purchases.
I find that peer effects generate persistent shifts in demand for electric cars and do not
merely reflect intertemporal substitution. One new electric car increases electric car take-up
for six-quarters in the workplace, and four-quarters in the family and persists over the entire
horizon in the neighborhood, while peer effects show no sign of turning negative.

Peer effects can influence people’s electric car take-up through several mechanisms. I
provide evidence for information transmission about leasing contracts, financial incentives,
charging infrastructure, and exposure to electric cars. In particular, peer effects are greater
for newly leased electric cars, during high subsidy periods, and in neighborhoods with public
chargers and single-family homes (as opposed to apartment buildings).4 In contrast, social
reputation concerns do not seem to be a primary driver of the observed peer effects. If the
key mechanism driving the peer effects is spreading information, then information campaigns
about the costs and benefits of adopting an electric car may be a complementary policy tool
to increase electric car diffusion.

The cumulative environmental impact of peer effects extends far beyond the electric
car decisions of peers. A new electric car in the peer group may also raise environmental
awareness of transportation emissions, shift social norms of driving fossil fuel cars, and
enhance preferences for new technologies, which affects individuals’ transportation choices.5

Adding up the different sources of car-related CO2 emissions, an additional new electric car
encourages peers to adopt cleaner non-electric cars, drive less, and reduce the number of
owned cars, suggesting that peer effects cause a shift to alternative modes of transportation.
The total CO2 net effect induced through the peer adoption of an electric car equals 4.1% of
the average CO2 emission of an individual, which is due to a 1.1% reduction in the average
vehicle emission per kilometer driven, a 2% reduction by driving less, and a 1% reduction in
the number of cars. While around half of the decrease in average CO2 emission is explained
by adopting new electric cars, the rest is due to non-adopters choosing cleaner fossil fuel

4This relates to a growing literature that tries to understand the economic channels behind peer effects
(Dahl et al., 2014; Bursztyn & Jensen, 2015; De Giorgi et al., 2020).

5This relates to research on the social consequences of green consumer demand (Nyborg et al., 2006;
Delmas et al., 2017), green value formation and transitions (Besley & Persson, 2019, 2023), and interactions
between innovation and values (Bezin, 2015, 2019).
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cars. The peer effect results are illustrated in Section IV.
To shift the electric car adoption of peers, my identification strategy exploits the fact

that many individuals in Sweden lease their cars and replace them on a fixed three-year
schedule. Specifically, I use the timing of the leasing contract renewal as an exogenous shock
to peer car adoption. Taken alone, the lease timing instrument shifts the adoption of new
cars in general, instead of exclusively new electric cars. To isolate exogenous shocks to
peers’ electric car adoption, I link the timing of the peers’ leasing contract renewal with an
individual prediction of their probability of adopting a new electric car, which I constructed
using machine learning techniques. Notably, the variation in electric car adoption is not
driven by differences in the composition of peer groups, as the sum of probabilities to lease
a new electric car is controlled for across groups.

To address how policymakers should optimally design subsidies for electric cars, I con-
struct a conceptual framework incorporating how peer effects influence the trajectory of CO2

emission damages using a discrete choice model of car purchases in Section V. The framework
suggests that the subsidy should equal the difference between the lifetime emission damages
of fossil fuel and electric cars minus the peer-induced emission changes from fossil fuel and
electric cars. The key insight is that the effect of peer influences on the subsidy hinges on
the extent to which peer-induced electric cars displace fossil fuel cars. If the peer-induced
emission changes from reducing fossil fuel cars exceed the emission changes from additional
electric cars, the effect on the subsidy is positive. In contrast, the effect on the subsidy
is ambiguous if the peer-induced externality changes from the additional electric cars only
partly displace the emissions from fossil fuel cars.

To evaluate how peer effects influence optimal subsidies for electric cars, I combine
the estimated peer effects on fossil fuel and electric car adoption with their respective CO2

emission damages. Peer effects amplify the environmental benefits of electric car adoption, as
the emission reductions from displaced fossil fuel cars outweigh the additional emissions from
new electric cars. These peer-induced emission reductions amount to $1,482, leading to an
optimal subsidy that is 66.2% higher than a standard Pigouvian subsidy. This higher subsidy
not only accounts for the unincorporated externalities of fossil fuel and electric cars but also
for the additional emission reductions driven by peer-induced shifts in vehicle adoption.

The literature on peer effects in early technology adoption has evolved along three
dimensions. One is related to identifying peer effects, which requires addressing the endo-
geneity of the peer’s behavior. This has proven difficult given the well-known econometric
issues of reflection, correlated unobservables, and endogenous group membership (Manski,
1993; Brock & Durlauf, 2001b; Moffitt et al., 2001). Recent work studies narrow settings
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by using distinct visual features or a particular type of car (Toyota Prius) as instruments.6

Besides these identification issues, a central challenge in studying peer effects is to construct
appropriate peer groups and access data that matches members of a peer group. Previous
work treated all past adopters in surrounding geographic entities as the reference group,
missing out on interpersonal influences along other dimensions. A third challenge is to de-
rive implications for optimal environmental policies in the presence of peer effects. While
prior studies have focused on calculating subsidies based on externalities from electric cars
(Holland et al., 2016; Rapson & Muehlegger, 2023), the existing research lacks a theoretical
framework that characterizes how peer effects alter the optimal incentives setting.

This paper advances the current state of research along all three lines. First, my method-
ological contribution is to demonstrate how econometric techniques from the recent shift-
share instrumental variables (SSIV) literature can be applied to estimate peer effects (Adao
et al., 2019; Borusyak et al., 2022), which unlocks a wide range of potential future ap-
plications. To address the econometric concerns inherent in measuring peer effects, I link
the timing of the leasing contract renewal with a measure of each individual’s probability
of adopting a new electric car. This identification approach mirrors a shift-share research
design that sums up the estimated probabilities (i.e., exposure shares) among all peers at
the leasing contract renewal (i.e., shifts). Section III presents the empirical specification to
measure peer effects and explains the identification strategy.

To give a concrete example of the identification strategy, suppose that there are two
similar peer groups (A and B), each with a single lessee whose contract expires in a given
quarter. While the probability that the new car is electric is high for the person in peer
group A, it is low for the person in peer group B. The identification strategy then compares
the subsequent electric car adoption of other people in the peer group that experienced an
expiring car leasing contract by someone who was ex-ante predicted to be likely to adopt
an electric car (peer group A) relative to a peer group that had someone exposed who was
unlikely (peer group B). Consequently, any differences in peer group electric car adoption
in the period following the peers’ contract renewal are informative about the role of peer
effects. The variation in the electric car adoption is determined by which individual in the
peer group is randomly induced to the expiring leasing contract, while both peer groups have
the same predicted probabilities of adopting a new electric car on average.

6The identification strategy in Heutel and Muehlegger (2015) exploits whether initial exposure to a low-
quality (Honda Insight) versus a high-quality product (Toyota Prius) affects the likelihood of purchasing a
hybrid vehicle. Narayanan and Nair (2013) estimate the peer effect using the adoption of hybrid vehicles that
are exact versions of their non-hybrid counterpart (Honda Civic) as an instrument for the network adoption
of the Toyota Prius in California. Their identifying assumption is that adopting a hybrid car is not subject
to social effects if a virtual identical combustion engine car exists.
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Second, I combine several administrative data sets spanning the population of Sweden
and all vehicle ownership, purchase, and leasing records to construct peer groups along
workplaces, families, and neighborhoods. The final data set consists of a comprehensive list
of individual socio-demographic characteristics, peer group characteristics, car attributes,
and charging infrastructure variables from 2012 to 2021. This data allows me to study
whether peer effects matter for the electric car take-up among co-workers, relatives, and
neighbors. Section II summarizes the data set and peer group construction.

Third, I show how government policy – namely environmental subsidies – interacts with
peer effects and how this can inform the design of optimal environmental policies. An essen-
tial contribution of my theoretical framework is that it delivers formulas for environmental
subsidies as a function of emission damages and peer effects that can be estimated in various
empirical applications. Specifically, by deriving a modified form of a Pigouvian subsidy, I
characterize the optimal subsidies for electric cars in the presence of peer effects. Finally, I
discuss how different mechanisms of the peer effects alter the optimal Pigouvian subsidy.

II. Data

A. Data construction

Data sources. The primary data sources are the Swedish vehicle register (Fordonsreg-
istret), the longitudinal integrated database for health insurance and labor market studies
(LISA), the occupational register (Yrkesregistret), the population and housing census (Folk-
och bostadsräkningar), the Swedish business register (Företagsregistret), and the geographic
database (Geografidatabasen) for the period 2012 to 2021 provided by Statistics Sweden.
In addition, I merge this data with information on the charging station network and the
financial implications of vehicle reforms enacted by the Swedish government.

The vehicle register entails data on all vehicles registered by Swedish residents. The
register contains information on the car’s general status (registration date, whether it is
owned by an individual or company, whether it is leased, when the car became the property
of the current owner, in use or not, etc.), the vehicle specification (make, model, and trim),
characteristics (service weight, odometer reading, fuel type, fuel efficiency, particle filter,
emissions, etc.), and the annual vehicle kilometers traveled. Each registration also records
a vehicle identification number and a social security number equivalent, which uniquely
identifies all individuals in Sweden. The vehicle identification number allows me to track the
ownership of vehicles over time.

To match individuals to their cars, I link the vehicle registry through the social security
number equivalent to the LISA data, which merges several administrative and tax registers
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for Swedish individuals aged 18 and above. LISA contains a list of socio-demographic infor-
mation (such as gender, age, family situation, income, education, and employment status).
I supplement the data with the geographic location of the individual’s residence and work-
place, measured by 250m grid cells in all urban and 1000m cells in rural areas. To add
occupational status, I link the data to the Swedish occupational register, which includes in-
formation on the gross salary, employment status, workplace industry code, and employment
duration on an annual basis. Similarly for firms, I add information on Swedish firms using
the business register. This includes a set of information on the firm (number of employees,
net revenue, personnel cost, and social contribution cost).

The charging infrastructure is supplemented through data from ChargeX (Uppladdning.nu).
The operators of this website provide free charging information services through map in-
terfaces and app solutions and have collected and maintained Sweden’s charging station
database since 2008. It includes information on the number of charging points and plug-in
spaces by their opening date and location coordinates. Charger characteristics include the
operator’s name, the connector type and voltage of each outlet, and the charging power.

I obtain information on vehicle rebates from government bills from the Ministry of the
Environment (2007, 2011, 2017) and information on the preferential taxation of green cars
from the Ministry of Finance (1999, 2001, 2005).

B. Peer groups

A pervasive challenge in studying peer effects is to construct appropriate peer groups and
access data that matches members of a peer group. This comprehensive administrative
data allows me to examine whether peer effects matter for adopting electric cars along
three dimensions: workplaces, families, and neighborhoods. These groups are a significant
source of social influence, as co-workers, relatives, and neighbors engage in frequent social
encounters, and their cars are visible to each other.7

The first social domain is assumed to be co-workers who work in the same workplace
(address of the firm). Because co-workers are more likely to interact directly in small- and
medium-sized firms, which account for 40.5% of the workforce, I restrict the co-worker peer
group to workplaces with at least 5 and up to 150 employees.8

Using the multi-generational register (Flergenerationsregistret) that connects individuals
to their parents and siblings, I define the family as all first- and second-degree relatives.

7For instance, cars are visible to colleagues when parked outside offices and are likely topics of discussion
among co-workers (Jansson, 2011; Johansson-Stenman & Martinsson, 2006). In residential neighborhoods,
vehicle selection is indicative of the driver’s social standing (Johansson-Stenman & Martinsson, 2006).

8As some individuals receive compensation from multiple employers, the workplace is the company that
pays the greatest annual compensation.
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If a person is adopted, I consider the adoptive parents to be the child’s family. A first-
degree relative includes the person’s parents, (half-)siblings, and children, while second-
degree relatives refer to the person’s grandparents, aunts, uncles, nephews, and nieces.

The third social group is the neighborhood. Using the geographic coordinates of res-
idences, I define all individuals living within the same 125m radius in urban and 500m in
rural areas as the neighborhood population.9

As peer effects are more easily measurable across individuals, I exclude cars owned by
legal entities (as opposed to private individuals) throughout the empirical analysis. In addi-
tion, I limit the sample to the three most frequently driven cars based on vehicle kilometers
traveled per person.

C. Descriptive statistics

Table A1 presents summary statistics of individuals and their cars between 2012 and 2021.10

Panel A summarizes socio-demographic statistics on the individual-by-year level for Swedes
above 18. The average Swede is 47 years old, with around 12 years of education, and earns
a disposable family income of 332,670 Swedish kronor (SEK) (≈ $35,398), conditional on
being employed.11 56% of individuals are married or live with a cohabitant, 44% have at
least one child, and around 41% own at least one car. The sample represents an annual
average of 7,947,218 Swedes.

Panel B of Table A1 highlights the descriptive statistics of the Swedish vehicle registry
data, which are at the vehicle-by-year level. The average car is 11 years old, travels 11,905
kilometers per year, and emits 122 grams CO2 per kilometer. The Swedish fleet comprises
an average of 3,531,815 private cars.

Table A3 lists the aggregated characteristics of workplaces, families, and neighborhoods
between 2012 and 2021. The average individual has 45 co-workers, 7 relatives, and 261
neighbors. The number of new electric cars per peer group, the outcome of interest, equals
.75 in workplaces, .09 in families, and 2.28 in neighborhoods. For all panels, the bottom row
displays how many people have expiring leasing contracts, which serve as an instrument for
new car adoption. The total number of co-workers, relatives, and neighbors at the three-year
leasing renewal equals .72 in workplaces, .1 in families, and 3.14 in neighborhoods.

9This follows an extensive literature defining networks through geographic entities (Topa, 2001; Arzaghi
& Henderson, 2008; Bell & Song, 2007; Manchanda et al., 2008; McShane et al., 2012; Narayanan & Nair,
2013; Kuhn et al., 2011; Agarwal et al., 2021).

10Relative to the population and car owners (Table A2), electric car owners are less likely to be unemployed
and more likely to be male, educated, married, and wealthier. Notably, electric car owners have, on average,
one additional year of education and earn SEK 146,000 (≈ $15,120) more in annual gross salary than the
average Swede.

11I convert SEK to US dollars using the exchange rate from January 1, 2020 ($.1063/SEK).
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D. Swedish car market

Evolution of alternative fuel cars. Historically, the Swedish vehicle fleet mainly con-
sisted of cars that run on petrol or diesel. Since 2006, however, alternative fuel cars have
gradually penetrated the Swedish market. Figure 1 displays the number of new cars regis-
tered monthly by individuals for each alternative fuel type between 2006 and 2021. Between
2006 and 2010, the registrations of ethanol-powered cars increased rapidly in Sweden, making
them the first alternative-fuel type to reach the market.

0

2000

4000

6000

8000

N
ew

 C
ar

 R
eg

is
tra

tio
ns

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

Year

Alternative Fuel Hybrid Electric
Plug-in Hybrid Battery Electric

Figure 1: New registrations of alternative fuel cars

Notes: The figure displays the number of monthly new car registrations of alternative fuel cars that were
registered by private individuals in the Swedish vehicle market between 2006 and 2021. Alternative fuel cars
are vehicles that partly or fully run on alternative fuels such as ethanol, compressed natural gas (CNG), or
LPG. A hybrid electric car combines a conventional internal combustion engine with an electric propulsion
system, using the engine to charge the battery while driving. A plug-in hybrid electric car can be recharged
from an external source of electricity and another fuel to power an internal combustion engine. A battery-
electric car is powered by one electric motor that only runs on electricity from a battery.

The uptake of electric, plug-in, and hybrid electric cars began around 2012. Since there
has been a steady increase in sales of electric cars annually, from 1,221 units in 2012 to 55,270
in 2021. This equals a 38.1% market share of electric cars relative to all new registrations in
2021. Electric cars sold were evenly distributed among the fuel types, with hybrid electric
cars accounting for 36% of new electric cars and battery-electric and plug-in hybrid electric
cars representing 28.7% and 35.3%, respectively. In total, private individuals have registered
149,184 electric cars since 2012.
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Leasing market. The Swedish automobile market has two striking features that I ex-
ploit to identify peer effects. First, a substantial portion of new cars is leased (as opposed to
purchased). The share of newly leased cars relative to the total number of new car registra-
tions in Sweden has increased from 5% in 2012 to 49.6% in 2021 (Figure A1). Low interest
rates are one explanation for the large proportion of leased cars. As the taxable vehicle
fringe benefits are calculated as a percentage of interest rates, low interest rates reduce the
leasing cost (Appendix B.2).
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Figure 2: Leasing contract renewal probability

Notes: The figure illustrates the contract renewal probability of leased cars with respect to the time in
the current car contract (i.e., quarters since first registration).

Second, leasing contracts typically have a fixed three-year schedule. First introduced by
Volvo in the late 1960s, car manufacturers in Sweden typically offer a warranty for the first
three years on new cars. Since then, car leasing contracts have been set up for this period.
To validate this timing in leasing renewal, Figure 2 plots the probability of leasing a new car
against the number of quarters since the current leased car’s registration. The probability
of leasing a new car spikes when the current car age crosses the three-year threshold (the
gray area). More than 40% of leased cars are replaced exactly 12 quarters after their first
registration. Given the large market for newly leased cars and the fact that around 40%

of these leased cars are exchanged after precisely three years, the timing of peer’s leasing
contract renewal reflects exogenous timing in the take-up of new cars.
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III. Empirical methodology and identification

A. Peer effect specification

To empirically estimate the size of peer effects for electric cars in the Swedish vehicle market,
the equation of interest (1) is given by a regression of whether individual i adopts a new
electric car in quarter q on the number of newly registered electric cars in the previous
quarter q−1 in peer group p, conditional on all individual and peer group characteristics:

V e
i,q = α + θeV e

p−i,q−1
+ γXp−i,q + δXi,q + ϕq + εi,q, (1)

where i indexes the individual, p the peer group of size N excluding individual i, q the quarter
and superscript e indicates electric cars. In all notations, attributes specific to a vehicle are
shown as superscripts, while characteristics specific to an individual are shown as subscripts.
The dependent variable, V e

i,q, is an indicator of whether individual i acquires a new electric
car in quarter q. The peer influence variable equals the sum of all electric car registrations
per peer group in the previous quarter q−1 excluding individual i: V e

p−i,q−1
=

∑
jϵN,j ̸=i V

e
j,p,q−1

.
The vector Xi,q represents a rich set of individual demographic variables, residential charg-
ing infrastructure, and previous car attributes.12 To control for the underlying peer group
characteristics, Xp−i,q =

∑
jϵN,j ̸=i

Xj.q

N−1
includes the average characteristics of the peer group

using the same set of demographic variables excluding individual i. The quarter fixed effect
ϕq captures time-varying factors such as nationwide incentives for cars, gas price shocks, or
the introduction of a new model. εi,q captures individual i’s error term.

The peer coefficient θe measures the effect of the number of new electric cars in the peer
group in the previous quarter (V e

p−i,q−1
) on whether the person adopts a new electric car in

the current quarter (V e
i,q).

This empirical specification makes two implicit assumptions: First, it assumes a lag of
up to one quarter in the transmission of peer effects. Second, it assumes a linear-in-sums
model such that peers are influenced by the total number of new car registrations in peer
groups while controlling for the number of peers.13 Alternative functional forms include the
share of peers that acquired new electric cars (linear-in-means) or whether any peer bought

12The individual demographic control variables include age, gender, disposable family income, gross salary,
employment status, a self-employment dummy, being married or cohabiting with a partner, having at least
one child, years of education, commuting distance, number of peers, and being at the lease renewal. The
residential charging infrastructure captures the installation of a charging point, the number of plug-ins and
charging stations, charging time, and charging capacity. The previous vehicle and driving attributes account
for vehicle kilometers traveled, owning an alternative fuel or electric car, the total number of cars, emissions,
engine power, service weight, and fuel efficiency averaged over the previous year.

13Controlling for network size in a linear-in-sum model is crucial as people with more friends are more
frequently exposed to peer effects (Bramoullé et al., 2020).
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a new electric car. The results are robust to these alternative functional forms and varying
transmission time of peer effects (Section F).

B. Identification

Identification concerns. The model specification in equation (1) implies that peers may
have similar car choices due to three distinct types of effects: (i) endogenous interactions: the
direct influence of peers’ new electric cars on individual car adoption, which implies genuine
peer influences (θe); (ii) exogenous (or contextual) interactions: the indirect influence on
individual electric car adoption from average exogenous characteristics of the peer group (γ);
(iii) correlated effects: the influence of a common set of unobservables on both individual
and peers’ car adoption (ε). The main empirical challenge is to disentangle the causal
relationship of peer influence on electric car adoption from the exogenous and correlated
effects. As only the endogenous peer effects amplify individual responses through social
interactions, correctly identifying endogenous peer effects is essential to guide policy.

Three main concerns arise in the identification of endogenous peer effects in equation
(1): reflection, endogenous group membership, and correlated unobservables (Manski, 1993;
Brock & Durlauf, 2001a; Moffitt et al., 2001). The first is the reflection problem, which
implies that just as peers may affect the individual, the individual may also affect peers.
Consequently, it is difficult to disentangle whether an individual’s action is the cause or
the effect of a peer’s influence. This hinders identifying the endogenous from the exoge-
nous effect, even in the absence of correlated effects. The latter two are concerned with
the differentiation between the social environment (endogenous and exogenous interactions)
and non-social, correlated effects. Endogenous group membership emerges if individuals with
similar characteristics self-select into groups, and these characteristics are important determi-
nants of the dependent variable.14 Correlated unobservables arise from common unobserved
factors that may affect both the individual and the peer group.15

Exogenous peer car adoption. I exploit exogenous variation in adopting electric cars
for some individuals in a group and measure how other group members’ car decisions change
subsequently (referred to as the partial population approach in Moffitt et al. (2001)). To
illustrate how this approach solves the identification concerns, suppose that a peer group is
composed of only two people: individual 1 and 2. Suppose now that the electric car adoption

14For instance, family-friendliness is a driver of women’s employment decisions (Herr & Wolfram, 2009;
Goldin & Katz, 2012), and if, at the same time, family-friendliness is related to the car purchasing decision,
this may increase the electric car adoption within the workplace in the absence of any peer effects.

15For example, targeted marketing campaigns within neighborhoods or vehicle fleet policy changes in the
workplace influence the car take-up of the peer group as a whole and are likely to be unobserved, correlated
within groups, and crucial for the car acquisition decision.
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of individual 1 in quarter q−1 is exogenously shocked by a variable Z1,q−1 . The system of
simultaneous equations in this peer group equals:

V1,q−1 = α1 + θe1V2,q−1 + γ1X1,q−1 + δ1X2,q−1 + βZ1,q−1 + ε1,q−1 (2)

V2,q = α2 + θe2V1,q + γ2X2,q + δ2X1,q + ε2,q (3)

This model captures the idea that individual 1’s electric car choice is affected by the
electric car choice of individual 2, and vice versa. It also allows individual 1’s choice to depend
on his characteristics (X1), and the characteristics of individual 2 (X2). The model captures
the idea that a shock to individual 1 increases the probability of adopting a new electric
car, and this may change the probability of individual 2 through peer effects (if θe ̸= 0), but
notably not through the common group effect shared by 1 and 2. If the exogenous shock to
the subset of the peer group is uncorrelated with X1, X2, ε1 and ε2 and individual 2’s car
choice is made after individual 1, the peer effects can be consistently estimated by regressing
V2,q−1 on V1,q and scaling it by the first stage.

The research design solves the reflection problem through the presence of an excluded
variable that appears in individual 1’s outcome equation but not in that of individual 2
and by using lagged, but not contemporaneous, adoption by peers (Towe & Lawley, 2013;
Bollinger & Gillingham, 2012; Bailey et al., 2022). As peer groups are determined before the
exogenous shock, endogenous group membership does not pose a threat to the identification.
Peer group changes that happen after the exogenous shock are either the causal result of the
instrument or orthogonal to it. Under the assumption that the instrument is orthogonal to
all observed and unobserved covariates, correlated unobservables do not bias the estimates.

C. Shift-share IV design

To implement the partial-population approach, a successful instrument needs to be as good
as randomly assigned (“independence”) and shift the electric car adoption probability of an
individual’s peer (“relevance”) without influencing the car decision through any other channel
than the peer effect (“exclusion restriction”). To construct an instrument that meets these
requirements, I link the timing of the leasing contract renewal (as an exogenous shock to the
car take-up) with a measure of each individual’s probability of adopting a new electric car.
This identification strategy corresponds to a shift-share (or Bartik) research design (Adao
et al., 2019; Borusyak et al., 2022),16 where the exogenous component comes from the timing

16The shift-share design has been used in numerous settings, such as firms that are differentially exposed
to foreign market shocks (Hummels et al., 2014; Berman et al., 2015), immigration shocks (Tabellini, 2020;
Fouka et al., 2021; Derenoncourt, 2022), individuals facing different national income trends (Boustan et al.,
2013), or countries that are differentially exposed to the U.S. food aid supply shocks (Nunn & Qian, 2014).
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of expiring individual-level car leasing contracts and the non-random exposure shares from
heterogeneity in the adoption probability of electric cars at the renewal threshold.17

Intuition for identification. To conceptualize how the identification strategy measures
peer effects, assume that there are two similar peer groups, and we want to measure how
the car choices of peers influence the individual in the red dashed circle (Figure 3). Each
peer group contains four peers, two of whom have a high probability of adopting an electric
car (green), and two have a low probability (brown). Suppose that in a given quarter, the
lease contract for one individual in each group expires. While the lease expires for someone
unlikely to adopt an electric car in the top peer group, it expires for someone likely to
go for an electric car in the bottom peer group. The identification strategy compares the
subsequent electric car adoption in the peer group that experienced a leasing renewal by
someone who was ex-ante predicted to be likely to adopt an electric car relative to a peer
group that had someone exposed who was unlikely. Consequently, any differences in peer
group electric car adoption in the period following the lease renewal are informative about
the role of peer effects. The variation is not driven by differences in the composition of the
peer groups as the sum of people adopting a new electric car among leasers is identical across
groups; instead, the renewal timing selects different people to lease a new electric car.

q0 q1
Quarter

Figure 3: Intuition for identification strategy

17The recent literature on shift-share instruments stresses two separate paths for identification: exogenous
shocks versus exogenous shares. As individuals are not randomly choosing electric cars at the renewal
threshold, I leverage exogenous variation from the timing of the leasing contract renewal, while allowing the
variation in exposure shares to be non-random.
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Leasing contract renewal. The exogenous component of the SSIV-design is based on the
idea that car leasing contracts are frequently renewed, and cars are exchanged after three
years in the Swedish vehicle market. The exogenous variation exploits the timing of the
leasing renewal contract as an exogenous shock to the peer car adoption.18 This instrument,
however, would shift the adoption of all general cars instead of exclusively electric cars.
Hence, I do not solely use how many peers are at the contract renewal in a given quarter
but also the type of peers and their likelihood of buying electric cars.

Electric car adoption propensity. To operationalize a research design that only shifts
peer electric car adoption, I interact the leasing contract renewal with a measure of each
individual’s probability of adopting a new electric car at the contract renewal.

For the non-random exposure shares, I develop a measure of each individual’s probability
of adopting a new electric car. I view the estimation of whether the individual at the leasing
renewal adopts an electric car as a pure prediction problem, which follows a growing literature
that proposes to use machine learning estimation to fit the first stage in an instrumental
variable context when the number of instruments is large (Belloni et al., 2014; Mullainathan
& Spiess, 2017; Peysakhovich & Eckles, 2018; Athey, 2018; Chernozhukov et al., 2018).
Under the assumption that the peer contract renewal timing is random, the type of peer
facing this renewal must also be plausibly random. In this context, I use information about
individual demographics, peer group characteristics, charging infrastructure, and past car
attributes (summarized as X) to estimate a single propensity of adopting a new electric
car for each individual who leases a three-year-old car.19 As the relationship between the
features and the demand for electric cars is likely to be complicated and non-linear, I fit a
neural network in equation (4) to predict these propensities:

P̂ r(V e | V 3y
i,q−1

= 1)q =
∑
mϵM

gm(ω
T
mXq−1). (4)

Let ωm be a unit vector of unknown parameters and gm an unspecified function estimated
using a flexible smoothing method. Figure C1 illustrates that the estimated propensities
accurately reflect individuals’ actual electric car take-up at the renewal cutoff. I use the
neural network as it provides the best fit between predicted and actual propensities, while
results are robust to alternative machine learning techniques (Table E11). Appendix C.1
provides details on the design and performance of the neural network.

18The growing number of leasing contract renewal shocks over time does not pose a possible concern
(Figure A1). However, as long as the shocks demonstrate idiosyncratic variation in the type of person at the
contract renewal while controlling for the number of leasing renewals, the validity of the instrument remains
even if the number of shocks in peer groups increases.

19For the remainder of the paper, I refer to these as “propensities.”
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To give concrete examples, Figure 4 plots the probability of adopting an electric car
at the renewal threshold for four characteristics: years of education, annual salary, vehicle
usage, and the previous engine power. Panel A indicates that the probability of adopting an
electric car at the lease renewal for people with less than 12 years of education is around 3%,
while it amounts to over 10% for people with a Ph.D. For salary, we observe a high adoption
probability for top-income groups in Panel B. Furthermore, the adoption probability of
electric cars is inversely related to the vehicle’s traveled kilometers. Finally, a car owner
with a smaller previous engine generally relates to higher electric car adoption. I predict a
single propensity using the heterogeneity of these rich background characteristics.

Figure 4: New electric car probability by demographic characteristics

Notes: The figures illustrate the probability of leasing a new electric car at the three-year leasing contract
renewal for four different characteristics: Years of education (Panel A), gross salary in thousand SEK (Panel
B), annual vehicle kilometers traveled (Panel C), and previous engine power in kilowatt (Panel D).

D. Estimating equations

To construct the SSIV for the adoption of electric cars in peer groups, I interact a dummy
indicating if the individual is at the three-year contract renewal ( V 3y

j,q−1
) with the individual’s

estimated propensity (P̂ r(V e | V 3y
j,q−1 = 1)). The exogenous variation comes solely from the

interaction of these two terms but not from the number of peers at the contract renewal or
their propensities. The instrument then equals the sum of all propensities across all peers at
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the three-year leasing renewal threshold in a given quarter.20 The first stage (5) and reduced
form equation (6) of the SSIV can be implemented by the following two-equation system:

V e
p−i,q−1

= αe
∑
jϵN

V 3y
j,q−1

· P̂ r(V e | V 3y
j,q−1 = 1) + δXi,q + γXp−i,q + ϕq

+ δ1V
3y
p−i,q−1

+ δ2Pr(V e | V l
j = 1)q−1,j + ui,q−1 (5)

V e
i,q = βe

∑
jϵN

V 3y
j,q−1

· P̂ r(V e | V 3y
j,q−1 = 1) + δXi,q + γXp−i,q + ϕq

+ δ1V
3y
p−i,q−1

+ δ2Pr(V e | V l
j = 1)q−1,j + ui,q−1 . (6)

The average of the estimated propensities is not constant across peer groups, placing the
SSIV in the “incomplete shares” class with panel data (Borusyak et al., 2022). To control
for the composition of peer groups and their car preferences, I add two key control variables
that capture these differences in propensities across peer groups. First, I additionally control
for the number of contract renewals in each peer group in a given quarter (V 3y

p−1,q−1
). Second,

I add a control for the average propensity to lease a new electric car for all leasing peers (l)
within a peer group (Pr(V e | V l

j = 1)q−1,j). This accounts for a potential direct relationship
between the average peer group probability and the individual probability of adopting a new
electric car in a given quarter. This follows the recent shift-share literature (Borusyak et al.,
2022) to control for the sum of the exposure shares when the sum varies across groups.

Identifying assumptions and validity checks. Validity of the SSIV requires two assump-
tions to be fulfilled: instrument validity and instrument relevance. The strength of the
instrument is verified in Figure 5. The exclusion restriction can be stated as follows:

E

[∑
i

(
∑
jϵN

V 3y
j,q−1

· P̂ r(V e | V 3y
j,q−1 = 1)j) · εi | Xi,p−i

]
= 0. (7)

Equation (7) expresses that propensity-weighted shocks and the error term are orthogonal.
This is satisfied as long as the shocks are as-good-as-randomly assigned, mutually uncorre-
lated, large in number, and sufficiently dispersed in terms of their average exposure, con-
ditional on the control vector. Applied to this context, the propensity-weighted number of
peers at the leasing renewal must be orthogonal to omitted characteristics that are correlated
with the individual electric car adoption, after conditioning on the specified baseline char-
acteristics.21 Although this assumption is inherently untestable, I examine the plausibility

20This can be interpreted as an instrumental variable regression that uses the propensity-weighted sum
of peer contract renewal as shocks (Borusyak et al., 2022).

21One possible concern is that the timing of leasing contract renewal is correlated among peers, resulting
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of the many conditionally uncorrelated shocks assumption by analyzing the distribution of
shocks and using balance tests to corroborate the plausibility of the conditionally exogenous
shock assignment assumption (Appendix C.2).

Inference. In the case of shift-share instruments, standard inference procedures lead
to standard errors that are too small if they are correlated across observations similarly
exposed to the same set of shocks.22 To account for a potential correlation between residuals
across individuals with similar propensities in peer groups, I follow the statistical inference
procedures of the recent shift-share literature that suggests clustering standard errors on
the shock-level, which accrues to peers in this context (Adao et al., 2019). In the non-
overlapping workplace and neighborhood, I cluster standard errors at the group over which
peers are defined. In the family, however, I cannot cluster standard errors at the peer-
group level due to the overlapping network structure. Hence, I explore the robustness of my
statistical inference to various approaches of constructing standard errors (Figure C3). To
account for the most possible across-individual dependencies in the error term, I cluster the
standard errors on the individual-level in the family.23 Appendix C.3 discusses statistical
inference and standard error construction.

First stage results. To provide evidence for the relevance of the instrument, Figure 5
displays the point estimates and 95%-confidence intervals of the first stage equation (5) for
all three peer groups. The x-axis is the value of the shift-share instrument, which I group into
10-percentile bins. The y-axis plots new peer electric car adoption, residualized on the full
set of baseline controls and quarter-fixed effects. The first stage estimates αe corroborate
that a predicted increase of one percentage point in leasing a new electric car translates
into 1.37 new electric cars in the workplace, 1.05 new electric cars in the family, and 2 new
electric cars in the neighborhood. This implies that one additional person with an expiring
leasing contract predicted to adopt an electric car results in approximately 1 to 2 additional
new electric cars in that peer group in the same quarter.24 The first stage F-statistics for
the workplace (350.6), family (10,683.4), and neighborhood (368.8) exceed the conventional

in re-occurring simultaneous car decisions in the absence of any peer effects. To address such concerns, I
directly control for whether the person is in the car leasing renewal quarter such that the variation purely
stems from the leasing renewal of peers. In addition, I document that my findings are robust to peer groups
with exactly one lease renewal, suggesting that correlated lease contracts do not influence the peer effects.

22This relates to Moulton’s (1986) standard error clustering problem, in which the residual and the
instrument are correlated across observations within predetermined clusters. In the presence of SSIV, there
is the additional complication that every pair of observations with overlapping shares may be correlated.

23Although the presence of across-cluster links implies that there remains the potential for correlations in
the error terms, I document that standard errors are not influenced by dependencies in larger peer groups.

24One reason the first stage coefficient is larger for neighborhoods than for workplaces and families is
the higher compliance with expiring lease contracts in neighborhoods. One additional person at the renewal
threshold adds .39 new cars in the workplace, .33 in the family, and .42 in the neighborhood (Figure E1).
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threshold values for instrument relevance.

Figure 5: First stage binned scatterplots

Notes: The figures present binned scatterplots of the first stage in the workplace (Panel A), family (Panel
B), and neighborhood (Panel C) (using the Stata package binsreg). The shift-share instrument along the
x-axis is defined as the interaction between the number of peers at the three-year car leasing contract re-
newal and their propensities to adopt an electric car. The shift-share instrument is grouped into 10 bins
(10 percentiles each) for all groups that experienced a contract renewal in a given quarter. Both relation-
ships are residuals of the set of control variables in equation (1): individual-demographic variables, peer
group characteristics, charging infrastructure, peer group demographic control variables, past car choices and
quarter-fixed effects. The slope coefficients αe and the standard errors come from the first stage regression
in equation (5). The first stage F-statistics are derived from a peer group level IV regression of the residual-
ized number of new peer electric cars on the propensity-weighted number of expiring peer leasing contracts.

How to interpret treatment estimates. The identification strategy compares the electric
car adoption of two peer groups, where one peer group received a new electric car (i.e., the
treatment group) relative to a peer group that did not receive a new electric car at the
renewal threshold (i.e., the control group). Instead, the control group either acquires a new
petrol or diesel car or does not renew the leasing contract; in this case, the individual either
retains the three-year-old car or returns it. On average, 63% to 65% of individuals in the
control group do not adopt a new car at the three-year threshold, whereas 31% to 33% lease
a new petrol and 4% a new diesel car. Hence, the peer coefficient must be interpreted relative
to the subsequent electric car adoption of a peer group in which about two-thirds of contract
renewals result in no new car adoption, and one-third in either a new petrol or diesel car.25

25Figure C4 illustrates the share of new petrol cars, diesel cars, and non-renewals for individuals at the
leasing contract renewal who do not adopt a new electric car. Notably, the propensity to adopt a new petrol
or diesel car during the leasing renewal quarter has remained steady, indicating that the interpretation of
the control group remains the same between 2012 and 2021.
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IV. Main Results

A. Regression results

Table 1 reports estimates of peer effects on new electric cars by co-workers (Panel A), relatives
(Panel B), and neighbors (Panel C). The coefficients in columns (1) and (2) indicate how
adopting one new electric car influences the total number of new electric cars in the peer
group in the next quarter. In column (3), I divide those total effects by the size of the peer
group, which gives an estimate of the peer effect “per capita.”26 These coefficients imply
how one new peer electric car affects the electric car adoption of one co-worker, relative, or
neighbor in the next quarter.

The 2SLS estimates indicate strong evidence for peer effects. The peer coefficient in
column (2) can be interpreted as follows: On average, one new electric car causes, in the
next quarter, an additional .094 new electric car acquisitions in the workplace, .023 in the
family, and .22 in the neighborhood. One new electric car increases the baseline probability
that a co-worker, relative, or neighbor adopt a new electric car by 9.8%, 103.6%, and .8%,
respectively. Put differently, approximately one in 10 electric cars in the workplace, 29 in the
family, and 4 in the neighborhood trigger a subsequent electric car adoption in the following
quarter due to peer effects.27

Although the peer effects are largest in the neighborhood in absolute terms, column (3)
indicates that the peer effects per co-worker and relative are larger than those per neighbor.
Specifically, each new electric car causes, in the next quarter, .0032 new electric cars per
relative, and .0021 per co-worker, while the peer effect is .0009 per neighbor. One explanation
is that the ties among relatives and co-workers are closer than among neighbors.

The observed peer effects, however, may be present for new cars in general. To identify
peer effects for new cars (rather than solely electric cars), I use the leasing contract renewal
as an instrumental variable for adopting new cars. In comparison, the peer effects for new
electric cars are considerably stronger than for all new cars (Table E1), suggesting that peer
groups are more relevant for adopting new, early technologies such as electric cars.

The second stage estimates exceed the OLS estimates in all peer groups. This is sur-
prising, as we expect an upward bias due to similar preferences, facing similar environments,
or experiencing common shocks of peer groups. The most likely explanation is that the SSIV
estimates represent a local average treatment (LATE) for the subset of people with peers

26The average person has 45 co-workers, 7 relatives, and 261 neighbors (Table A3).
27Most relatedly, Narayanan and Nair (2013) estimate that 100 Toyota Prius in the zip code result in

one incremental purchase through peer effects. Given the arguably stronger ties of co-workers, relatives, or
immediate neighbors (relative to previous adopters in large geographic groups), the observed peer effects are
considerably larger than the prior estimates for hybrid EVs.
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Table 1: Peer effects in electric car adoption

OLS Second Stage

(1) (2) Total (3) Per Capita

A.Workplace Network
New Peer Electric Car .0455*** .0944*** .0021***

(.0073) (.0235) (.0005)
%-Effect 4.7 9.75 9.75
Mean Dep. Variable .021 .021 .021

B.Family Network
New Peer Electric Car .0091*** .0234*** .0032***

(.0005) (.0082) (.0011)
%-Effect 40.42 103.59 103.59
Mean Dep. Variable .003 .003 .003

C.Neighborhood Network
New Peer Electric Car .0371*** .2240*** .0009***

(.0024) (.0295) (.0001)
%-Effect .13 .78 .78
Mean Dep. Variable .109 .109 .109

Notes: This table presents the regression estimates of peer effects in work-
places (Panel A), families (Panel B), and neighborhoods (Panel C). Column
(1) presents OLS estimates from the regression in equation (1), column (2)
and (3) reflect the second stage estimation using the shift-share instrument.
The dependent variable in columns (1), and (2) indicates the number of new
electric cars in the peer group in a given quarter. The dependent variable
in column (3) divides the total effects by the size of the peer group, which
gives an estimate of the peer effect “per capita.” All regressions include indi-
vidual demographic, past car attributes, charging infrastructure, peer group
demographic control variables, and quarter-fixed effects. The %-effects and
the mean dependent variables are reported below the coefficients. The unit of
observation is individual×quarter. The time period reaches from 2012 until
2021. Robust standard errors, clustered by plants in Panel A, individuals in
Panel B, and neighborhoods in Panel C, are in parentheses. *, **, ***: sta-
tistically significant with 90%, 95%, and 99% confidence, respectively.
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at the lease renewal. Relative to the average population, people leasing cars differ in demo-
graphic and vehicle characteristics.28 Consequently, the observed peer effects with frequent
contract renewals may be higher than the average peer effect in the population. Given the
high prevalence of leased cars, especially among individuals likely to be early adopters of
electric cars, the LATE corresponds to the population we expect to be most influential early
in the adoption process.

To identify the characteristics of socially influential individuals, I explore the hetero-
geneity in the transmission of peer effects in Figure E2. Understanding the heterogeneous
patterns in peer effects is valuable for policymakers to predict future adoption rates and
target financial incentives toward socially influential groups. The results indicate that age,
education, income, and peer group size are predictors of the strength of peer effects. In
particular, peer effects of adopting a new electric tend to be stronger among younger indi-
viduals (< 45) and are substantially larger for those with a college degree within families and
neighborhoods. In addition, peer effects are amplified in smaller peer groups and increase
with income in workplaces and neighborhoods.

B. Substitution

An important question is whether the observed peer effects correspond to newly generated
demand or are pulled from other vehicle fuel types. These coefficients are crucial for deter-
mining optimal subsidies in Section V, as they quantify the extent to which peer-induced
electric car adoption displaces fossil fuel cars. To answer this, I measure how a new peer’s
electric car adoption influences the subsequent adoption of three fuel types (petrol, diesel,
and electric) and new cars. Empirically, I regress whether individual i adopts a new electric,
petrol, diesel, and any new car on the number of newly registered electric cars in the previous
quarter in the respective peer group.

Figure 6 illustrates the peer effect estimate of one additional new peer electric car on
new petrol, diesel, electric, and new cars in each peer group. The top bar in each panel
(mirroring the results in Table 1) indicates that an additional peer electric car increases the
probability of adopting an electric car in the next quarter. However, the peer electric car
adoption simultaneously reduces the probability of adopting new diesel and petrol cars in all
peer groups. This suggests that peers do not only accelerate the adoption of electric cars but
also displace the adoption of diesel and petrol cars. Hence, the take-up of new technologies

28Compared to the population, people who lease cars are relatively younger, more likely to be male, more
wealthy, less likely to be unemployed, and more likely to be married or cohabitant (Table A4). An individual
leasing a car earns, on average, around 130 SEK (≈ $13,819) more gross salary income and has .75 years
more education. Generally, leasers own more fuel-efficient cars, have smaller engines, lower vehicle emissions,
and are more likely to be electric.
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accelerates future adoption through positive peer effects and reduces the acquisition of old
technologies (such as fossil fuel cars).

Overall, the peer adoption of electric cars results in a reduction of new cars in workplaces
and families, but has no impact on new cars in neighborhoods relative to a peer group that
does not receive an exogenously-arriving new electric car. This suggests that peer effects in
neighborhoods displace fossil fuel cars as the incremental demand for electric cars is pulled
from diesel and petrol cars. In workplaces and families, the additional demand for electric
cars is more than offset by reduced demand from fossil fuel cars, indicating that peer effects
may encourage a transition to other modes of transportation in addition to the displacement
of petrol and diesel cars.29

Figure 6: Peer effects by vehicle fuel types

Notes: The plots present regression estimates of peer effects across three different motor fuel types (petrol,
diesel, and electric) and all new car registrations for the workplace (Panel A), family (Panel B), and neigh-
borhood (Panel C). The dependent variable measures the number of new petrol (red), diesel (blue), electric
(green), or any new cars (grey) in the peer group. All regressions include individual demographic, past car
attributes, charging infrastructure, peer group demographic control variables, and quarter-fixed effects. The
unit of observation is individual×quarter. The time period reaches from 2012 until 2021. 95%-confidence
intervals reflect robust standard errors, clustered by plants in Panel A, individuals in Panel B, and neigh-
borhoods in Panel C.

As we have so far only considered peer effects among the aggregate of all types of electric
cars, an important question is how the peer effects of early new technologies (hybrid cars)
influence the adoption of later, cleaner technologies (plug-in electric cars). Among the types
of electric cars, peer effects are primarily driven by plug-in electric cars (i.e., plug-in hybrid
and battery electric). In contrast, new peer hybrid cars displace the adoption of plug-in

29As the share of peer-owned electric cars in neighborhoods is lower than in workplaces and families, one
explanation for the lower rate of substitution within neighborhoods is that peer effects displace fossil fuel
cars with higher levels of peer electric car adoption.
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electric cars (Table E2),30 which suggests hybrid cars could potentially hinder the transition
towards plug-in electric cars.

Conversely, the peer adoption of new fossil fuel (petrol or diesel) cars does not affect the
subsequent adoption of new fossil fuel cars among co-workers and neighbors and has positive
effects among relatives. However, it results in a reduction of new electric cars relative to a
peer group that experienced a new peer electric car adoption in all peer groups (Table E3).
This implies that the peer effects in fossil fuel cars are less relevant for their subsequent
adoption in peer groups and displace the adoption of electric cars.

C. Dynamics

Having estimated the peer effects after one quarter, I next explore the dynamics of peer
effects over longer periods. This answers how long the social influence of the peer electric car
adoption lasts and whether these peer effects generate additional demand for electric cars or
merely reflect an intertemporal substitution of already planned future purchases.

Interpreting longer-horizon peer effects becomes more complicated as second-degree ef-
fects gradually emerge. For example, an individual’s new electric car in quarter q may affect
a mutual peer’s acquisition in quarter q + 1, influencing another peer’s purchasing decision
in quarter q+2. The estimated LATE coefficients capture both the direct effect of the initial
peer acquisition and all higher-order indirect effects by common peers caused by the initial
electric car adoption. Section D.1 documents the regression specifications to estimate the
peer effects dynamics.

Figure 7 displays the total peer effect coefficients (θeτ ) four quarters prior and up to eight
quarters following the peer electric car adoption in quarter q = −1 across the three peer
groups. The dashed line refers to the peer electric car adoption period, which resembles the
first stage regression corresponding to equation (5). Although the parallel trends assumption
is inherently untestable, the trends in electric car adoption before the leasing renewal quarter
for a peer group that received a new electric car and a peer group that did not receive a new
electric car at the renewal threshold suggest that the assumption is likely to hold.

The dynamics reveal that the peer effects of electric cars in neighborhoods persist over
the entire horizon, whereas peer effects last for the first six quarters in the workplace and four
quarters in the family.31 After that, the total peer effect converges toward zero. Importantly,

30This mirrors results in the market for efficient lighting (Armitage, 2022), where early improvements in
lighting efficiency (halogens, CFLs) led to reduced adoption of later, high-efficiency products (LEDs).

31One explanation for the longer-lived peer effects among co-workers and neighbors is that individuals
may sort into green workplaces or neighborhoods. Restricting the sample to individuals who worked in the
same plant or lived in the same neighborhood reveals that the peer effect dynamics persists for constant peer
groups (Figure E4), indicating that switching jobs or moving does not explain the different dynamics.
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the peer effect on the uptake of electric cars shows no consistent sign of turning negative.
This indicates that interpersonal influences generate additional demand for electric cars and
are not merely intertemporal substitution.32 Aggregating the observed peer effects over two
years, I find that one additional electric car in the peer group adds .72 new electric cars in
the workplace, .06 in the family, and 2.99 in the neighborhood.33

Figure 7: Peer effect dynamics

Notes: The figure displays the peer effect dynamics for new electric cars in the workplace (Panel A), fam-
ily (Panel B), and neighborhood (Panel C). The dependent variable indicates the number of new electric cars
in the peer group up to four quarters prior and up to eight quarters following the initial electric car adoption
of peers. The dashed line between period -1 and 0 refers to the new peer electric car adoption period, which
resembles the first stage regression in equation (5). The coefficients capture the total peer effect induced by
SSIV in quarter q=-1. 95%-confidence intervals reflect robust standard errors, clustered by plants in Panel
A, individuals in Panel B, and neighborhoods in Panel C.

D. Environmental impact

The environmental impact of peer effects may extend beyond the electric car decision of
peers. A new electric car may also encourage peers to adopt cleaner, non-electric cars, drive
less, or shift to alternative modes of transportation (e.g., public transport, cycling). These
additional adjustments could reflect raised environmental awareness of commuting choices,
shifting social norms, evolving preferences for new technologies, and financial constraints to
adopting a new electric car.

While estimating the substitution to other modes of transport remains challenging, I
compute how adopting one new peer electric car affects an individual’s car-related CO2

32The waiting times for electric cars provide one possible explanation for peer effects over longer periods.
Individuals typically select their car before the lease renewal so that the new car’s arrival coincides with
the lease renewal. If the individual at the leasing renewal exerts peer effects, waiting periods will delay the
adoption of new electric cars, and peer effects will appear in subsequent periods.

33The peer effect dynamics for all new general cars are considerably shorter (Figure E3), suggesting peer
effects are more persistent for new electric cars.
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emissions. These are equal to the product of the per-person average vehicle emissions per
kilometer (V CO2

i,q ), the per-person average vehicle kilometers traveled (KMi,q), and the num-
ber of cars (Ni.q).34 To determine the peer-induced car-related CO2 emission changes, I
differentiate the CO2 emissions with respect to the peer’s electric car adoption for the next
six quarters q = 0, ..., 6:

△CO2i,q = θVq · KMi,q · Ni.q︸ ︷︷ ︸
△CO2

+ θKM
q · V CO2

i,q · Ni.q︸ ︷︷ ︸
△Driving

+ θNq · V CO2
i,q · KMi,q︸ ︷︷ ︸
△V ehicle

(8)

The peer coefficients θVq , θKM
q , and θNq indicate how one new peer electric car influences the

vehicle emissions, the kilometers traveled, and the number of cars.35 Equation (8) implies
that the CO2 emission change (△CO2i,q) resulting from the adoption of a new peer electric
car is equal to the sum of three effects: changes in (i.) vehicle emissions, (ii.) kilometers
traveled, and (iii.) the number of cars. The peer-induced effects on vehicle emissions,
kilometers traveled, and the number of cars in the workplace, family, and neighborhood are
presented in Table E4, Table E5, and Table E6, respectively. Appendix D.2 describes the
derivation of the CO2 emission model and the regression specifications.

Figure 8 illustrates how one new peer electric car affects the per-person CO2 emissions
in the workplace (Panel A), family (Panel B), and neighborhood (Panel C) by encouraging
peers to adopt cleaner cars (“vehicle emission”), drive less (“kilometers traveled”), and reduce
the number of owned cars (“number of vehicles”) relative to the average CO2 emission of a
person in the peer group. One new peer electric car reduces, in the next quarter, the vehicle
emissions of a co-worker’s car by .55 grams (with .27 grams resulting from the adoption of
new electric cars). To quantify the total effect on car emissions, I multiply the peer coefficient
on vehicle emissions by the individuals’ kilometers traveled and the number of cars. One
new peer electric car causes a .2% CO2 emission reduction by triggering co-workers to adopt
cleaner cars in the next quarter. Around half of the immediate reduction in car emissions is
explained by adopting electric cars (red dashed line); the rest is due to non-adopters choosing
cleaner fossil fuel cars.36 Over the next four quarters, the total impact of vehicle emission
changes on average CO2 emissions increased to approximately 1.1% per co-worker.

Furthermore, one new electric car reduces the average kilometers traveled of co-workers

34I only account for the end-of-pipe emissions of cars, not the emissions throughout production or from
charging. Since Sweden’s electricity predominantly comes from renewable sources, the carbon intensity of
grid electricity is low (Morfeldt et al., 2021), making emissions from charging electric cars negligible.

35The CO2 assessment of peer effects excludes “ripple” effects on the second-hand car market. In Table
E7, I find that peer effects have no effect on adopting used electric cars.

36To link this to the change in CO2 emissions solely caused by new electric cars, I multiply the peer effect
on electric car adoption ( .27 grams) by the emission reduction induced by adopting a new electric car.
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by around 154 kilometers and reduces the total number of cars by .02 after one year. This
corresponds to a reduction of 2.2% and .8% in CO2 emissions through changes in driving
behavior and from owning fewer cars, respectively. The empirical evidence that people are
driving fewer cars and traveling less frequently by car may indicate a transition to alternative
modes of transportation. The total CO2 emission changes in the workplace caused by peer
effects amount to 4.1% after four quarters, which comes from a 1.1% reduction in vehicle
emissions, a 2% reduction by driving less, and a 1% reduction in the number of cars. Figure
E5 confirms that the peer effect results on the total CO2 emission align closely with the sum
of the CO2 emission changes through these three margins.

The peer-induced CO2 emission reduction in the family (and neighborhood) corresponds
to 4.6% (1.4%) after four quarters, which can be attributed to a 2.5% (.5%) reduction in
vehicle emissions, a 2.1% (.5%) reduction by driving less, and a 0% (.4%) reduction in
owning fewer cars. One additional new electric car in the family results in a similar CO2

emission reduction through new electric cars, cleaner non-electric cars, and driving less after
four quarters. However, relatives’ influence on vehicle emission reduction fades after four
quarters and does not lower the number of cars owned. One new peer electric car in the
neighborhood results in a persistent CO2 emission reduction, although the peer influence of
neighbors on car-related CO2 emissions is weaker compared to co-workers’ and relatives’.

Figure 8: Peer effect on CO2 emissions

Notes: The figure displays how one additional new electric car impacts the per-person CO2 emissions
through a change in (i.) the average vehicle emissions, (ii.) the vehicle kilometers traveled, and (iii.) the
number of owned cars relative to the average CO2 emission of a person in the in the workplace (Panel A),
family (Panel B), and neighborhood (Panel C). The red dashed line refers to the impact on CO2 emissions
from changes in vehicle emissions of solely electric cars. I set statistically insignificant effects to zero.

The empirical results suggest that peer effects facilitate the transition to a greener trans-
port sector and expand the scope of peer effects by revealing that the total CO2 emissions
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of electric cars are significantly greater than the adoption decision of electric cars.37 While
peer effects in electric car adoption result in a persistent CO2 emission reduction, switching
to non-electric cleaner cars, driving less, and reducing the number of owned cars account for
most of the CO2 savings.

E. Mechanisms

Peer effects can influence people’s electric car take-up through several mechanisms. Peer
effects may serve as a source of information, and individuals are therefore affected through
“social learning” about electric cars (Moretti, 2011; Dahl et al., 2014; Herskovic & Ramos,
2020). Although it is difficult to assess what type of information transmission drives the
estimated peer effects without data on individual information sets, I empirically test whether
the information is transmitted about the leasing contracts, financial incentives, the charging
infrastructure, and through exposure or experience with electric cars.

Figure 9: Decomposition of peer effect on leasing

Notes: The figure decomposes the impact of new peer electric car adoptions for different individual leas-
ing contract structures and purchases in workplaces, families, and neighborhoods. The dependent variable
for new, expring, and early leases equals the number of new electric cars at a new leasing contract, at the
three-year leasing renewal, and renewed before the leasing renewal, respectively. The dependent variables
for car purchases refers to purchases of a new electric car. Each bar represents the total treatment effect
normalized to 100%. The peer effects on different lease contracts are illustrated in Table E8. I set statisti-
cally insignificant, negative effects to zero.

The learning channel may imply that peers share information about how to lease a new
car. If leasing information is a key driver of the observed peer effects, I expect peer effects
to influence individuals to adopt electric cars with new, expiring or early lease contracts as
opposed to individuals with new purchases. Figure 9 demonstrates that peer effects primarily

37In addition to the effect on CO2 emissions, new peer electric cars trigger individuals to adopt cars with
greater fuel efficiency and smaller engines (Table E7).
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influence the take-up of new leased electric cars, but have a smaller impact on the purchase
of new electric cars. To test whether information regarding leasing contracts is specific to
electric cars or applies to any new car, I regress whether an individual adopts a new electric
car on the number of new fossil fuel cars. Figure E6 documents that peer effects are absent
for new non-electric cars. This implies that social learning is specific to leasing new electric
cars and does not operate through leasing new fossil fuel cars.38

A second possible learning mechanism is that peer groups provide information about
the financial incentives for adopting a new electric car. Since the penetration of electric cars
is still low, there may be a lack of information about the financial incentives of adopting a
new electric car. Separating the sample into three distinct subsidy periods — low, medium,
and high (Figure B1) —, Figure E7 reveals that the peer effects increase with higher financial
incentives for electric cars. As a result, peers are a potential source of information about the
financial incentives for electric cars.39

A third plausible channel could be learning about charging plug-in electric cars from
peers.40 For public chargers, this may include sharing information about the closest residen-
tial charging station, recharge time and cost, and available parking spots with plug-ins. As
exposure to charging stations in the residential neighborhood is likely associated with being
more informed about the charging infrastructure, I test this hypothesis by breaking up the
peer effect estimates from neighborhoods with and without public charging stations. Panel
A of Figure E8 shows that peer effects for plug-in electric cars are substantially larger in
neighborhoods with public charging stations.

Additionally, living in single-family homes instead of multi-dwelling units may facilitate
sharing information about residential charging. Electric car owners in single-family houses
may exchange information about home charging station installation, electricity costs, or
available government incentives. To test this idea, I estimate the peer effects for hybrid and
plug-in electric cars in neighborhoods predominantly consisting of houses or apartments.
Panel B of Figure E8 demonstrates that peer effects for plug-in electric cars are exclusively
positive in neighborhoods comprised of single-family homes.41 These results suggest that

38The information channel aligns with the fact that the peer effects are considerably larger in small peer
groups, where the transmission of information is straightforward.

39An alternative explanation is that individuals are at a different adoption level in higher subsidy periods
and the demand elasticities are more responsive to peer’s electric car adoption.

40The availability of charging station infrastructure at home and at work has been argued to play a crucial
role in the EV decision (Springel, 2021; Li, 2016).

41The visibility of electric cars may also serve as a mediator for information transmission, such that electric
cars in a driveway have stronger visibility and attributability than those parked near apartment buildings.
Previous research has argued that one determinant of the relatively high market share of the Toyota Prius
was its differentiated design, which made it more recognizable in the neighborhoods (Kahn, 2007; Ozaki &
Sevastyanova, 2011).
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sharing information about the public and residential charging infrastructure contributes to
the observed peer effects.

A peer that has tried a new technology more frequently may be able to provide more
detailed information about its characteristics. To assess whether the experience with electric
cars drives information transmission, I compare the strength of peer effects for electric cars
driven more frequently (> 12.000 km annually) to those driven less frequently (< 8000km

annually) in Figure E9. Consistent with this experience channel, I find that the estimated
peer effects are greater among peers who drive their electric cars more, which suggests that
information emerges due to the peer’s experience with electric cars. The distinction between
low and high usage is most pronounced in neighborhoods where exposure to electric cars is
expected to influence peer effects the most.

In addition to the purely informational value, peers’ electric car adoption may also
directly enter the individual’s utility function through a “preference channel” (Mas & Moretti,
2009; DellaVigna et al., 2016; Bursztyn et al., 2018). Peer effects can, for example, serve
as an instrument for enforcing norms through social reputation concerns, which directly
enter an individual’s utility function (Benabou & Tirole, 2011; Jia & Persson, 2021). Social
reputation in adopting an electric car can operate through the honor of being an early adopter
or the fear of being shamed for driving a gas guzzler. The empirical results in Figure E7,
however, indicate that the peer effects are particularly large when there are subsidies for
electric cars. As financial incentives reduce the social reputation from adopting an electric
car, the financial motives of peer effects dominate the social reputation concerns in the
context of electric cars. Moreover, Figure E10 shows that peer effects increase as the electric
car ownership in the peer group progresses. This implies that social reputation is unlikely
to be the primary driver as social reputation associated with early adoption should diminish
as more peers own electric cars, potentially leading to declining peer effects.

Assuming that social norms operate through conforming to the average car type of peers
in the utility function (Akerlof, 1997; Kandel & Lazear, 1992; Bernheim, 1994), deviating
from the average CO2 vehicle emissions of peers becomes more costly in a conformity model.
Hence, I split the sample into peer groups with low- and high-emitting vehicle fleets in
Figure E11. The peer effects in low-emitting fleets are substantially larger in neighborhoods,
indicating that conformity to social norms is mainly present among neighbors.

F. Robustness checks

In this Section, I test the stability of the estimated peer effect coefficients to various al-
ternative functional specifications, sample restrictions, peer group structure, placebo tests,
machine learning techniques, dynamics, and control groups. Table E9 shows that using the
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proportion of peers and a binary indicator denoting whether a peer has adopted a new elec-
tric car instead of using the total number of peer electric cars as a measure of social impact
has little effect on the outcomes. In addition, including fixed effects over which peers are
defined has no impact on the estimated peer effects. To mitigate the concerns regarding dis-
parities between peer groups with and without leasing peers, restricting the sample to peer
groups that experienced at least one leasing renewal leaves the peer effects unaltered. The
peer effects are also robust to solely including peer groups with exactly one lease renewal,
indicating that the findings are not driven by correlated expiring lease contracts among peers.

As peer groups overlap, such that co-workers may reside in the same neighborhood
or are related, the peer coefficients may capture potential interdependencies between peer
groups. In the last column, I evaluate each peer group independently by subtracting members
of other peer groups from the reference group. For example, I exclude relatives working at
the same plant (e.g., family-owned businesses). The findings reveal that the workplace and
neighborhood effects diminish marginally, while the family effect shrinks by 25%. A fraction
of the peer effect in families is caused by co-workers or neighbors who are relatives.

As a validity check, I also test the results for placebo peer groups. The placebo co-
workers are: 1. Firm-level co-workers: These are co-workers employed in the same firm,
two-digit industry, and municipality, but they do not work in the same plant; 2. Future co-
workers and neighbors: This placebo peer group consists of future co-workers or neighbors
that sort into the individual’s workplace or neighborhood. Table E10 verifies that there are
no peer effects among placebo co-workers and neighbors, which provides further evidence
that peer effects do not simply reflect a spurious relationship induced by unobserved factors.

To alleviate the concern that the estimation model used for the propensity prediction
does not drive the result, Table E11 documents that the peer effect results remain robust to
alternative machine learning predictions that use a logistic regression, a LASSO regression,
and a random forest. I perform an additional robustness check regarding the dynamics
of peer effects, which is concerned with the transmission time of peer effects. Instead of
assuming a transmission period of one quarter for peer effects, Table E12 demonstrates that
peer effects remain significant even with longer transmission times of two, three, and four
quarters, although with larger standard errors. Finally, I examine the stability of the peer
coefficient relative to different control groups. The baseline peer effect is estimated relative
to a control group in which two-thirds of contract renewals result in no new car adoption
and one-third in a new fossil fuel car. Table E13 shows that the peer coefficients are robust
relative to a control group that does not renew the lease or adopts a new fossil fuel car.
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V. Optimal policy

Policymakers frequently offer subsidies to encourage the adoption of durable goods, such
as EVs, to achieve environmental goals. Because adopting electric cars influences peers’
vehicle choice and the associated externalities, designing an optimal subsidy that accounts for
these peer effects remains an open research question. To characterize the optimal Pigouvian
subsidy that internalizes peer interactions, I combine a discrete choice model over the vehicle
type with the effect of peer influences.

A. Model of vehicle choice

Consider a discrete choice model in which consumers choose between a new fossil fuel and an
electric car.42 Consumers obtain utility from vehicle kilometers traveled over the life of the
selected car, either fossil fuel kilometers KM f or electric kilometers KM e, and a composite
consumption good x (with price normalized to one). Fuel and car prices are fixed. The
indirect utility of purchasing a new fossil fuel car is

W f = max
x,KMf

x + f(KM f ) such that x+ pfKMKM f = I − pf , (9)

where pf is the price of the fossil fuel car, pfKM is the price of a fossil fuel kilometer, I

is income, and f is a concave function. Similarly, the indirect utility of purchasing a new
electric car is

W e = max
x,KMe

x + h(KM e) such that x+ peKMKM e = I − (pe − τ), (10)

where pe is the price of the electric car, peKM is the price of an electric kilometer, and h is
a concave function. The government provides a subsidy τ for purchasing a new electric car.
Differences in the functions f and g capture any difference in attributes between fossil fuel
and electric cars.

Consumers generate emission damages by driving but disregard these externalities when
choosing the type of car. Accordingly, I define Φf and Φe as the sum of unincorporated
marginal externalities (in $) over the driving lifetime of a fossil fuel and electric car, respec-
tively. In addition, consumers disregard how adopting electric cars impacts the externalities
of their peers, whom they influence to acquire an electric or fossil fuel car. The lifetime dam-
ages from the peer electric car adoption correspond to the externalities of the peer-induced
fossil fuel (Φfθf ) and electric car (Φeθe).

42Theoretical discrete choice models in the transportation literature include De Borger (2001), De Borger
and Mayeres (2007), and Holland et al. (2016).
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B. Deriving peer effects subsidies

The policymaker selects a subsidy for electric cars that maximizes the welfare associated with
the purchase of a new car. The welfare is defined as the sum of expected utility from a new
car purchase, and the expected government expenditures minus the expected externalities
from the fossil fuel and electric car adoption, including their impact on the externalities from
the peers’ electric car adoption:

W = µ(ln(exp(
W e

µ
) + exp(

W f )

µ
)) + R − (πΦf + (1− π)(Φe(1 + θe) + Φfθf )). (11)

π and (1−π) correspond to the probabilities of adopting a fossil fuel and electric car. Because
the first-best policy is differentiated Pigouvian taxes on both types of kilometers, I refer to
the welfare-maximizing subsidies as second-best. Optimizing the welfare function gives the
following proposition (see Appendix F for all proofs):

Proposition 1. The second-best subsidy for electric cars that internalizes how peer effects
in electric car adoption influence the subsequent adoption of electric and fossil fuel cars is
given by

τ ∗ = Φf − Φe − θfΦf − θeΦe.

In the absence of peer effects (θf = θe = 0), the second-best subsidy for electric cars τ equals
the discrepancy between the sum of all unincorporated externalities over the lifespan of a
fossil fuel and electric car (Holland et al., 2016; Rapson & Muehlegger, 2023). I refer to this
difference, Φf−Φe, as the marginal external benefit of an electric car. When the policymaker
incorporates the influence of peer effects, Proposition 1 documents that the second-best
purchase subsidy for electric cars equates to the marginal benefits of an electric car minus
the peer-induced externality changes of fossil fuel and electric cars, which correspond to the
peer effect on adopting fossil fuel and electric cars multiplied by their respective externalities.

Positive peer effects in the adoption of fossil fuel and electric cars (θf , θe > 0) both
diminish the subsidy as the additional fossil fuel and electric cars among peers exacerbate
the externalities (assuming strictly positive externalities). If peer effects of electric cars lead
to additional fossil fuel and electric cars, the second-best subsidy, factoring in peer effects,
is lower than the marginal benefits from electric cars. However, a peer electric car adoption
that is caused by a substitution from fossil fuel cars (θf < 0) increases the second-best
subsidy by the magnitude of avoided externalities from fossil fuel car adoption.

Hence, the impact of peer effects on the second-best subsidy depends on how much
electric cars displace fossil fuel cars. To illustrate this, I present the following three cases:
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1. Partial displacement (| − θf | < θe): If peer effects for electric cars partly displace the
fossil fuel car adoption, the sign of the subsidy is ambiguous because the reduction in
externalities associated with fossil fuel car adoption may not outweigh the additional
externalities arising from the increased adoption of electric cars by peers.

2. One-to-one displacement (−θf = θe = θ): If the adoption of electric cars is accompa-
nied by a corresponding reduction in fossil fuel cars, the subsidy scales proportionally
to the peer-induced marginal external benefits of electric cars, θ(Φf − Φe).

3. Excess displacement (| − θf | > θe): If peer effects lead to a greater reduction in fossil
fuel cars than the corresponding increase in electric cars (e.g., substitution to other
transport modes), then the subsidy exceeds the peer-induced marginal external benefits
of adopting electric cars.

C. Computing peer effects subsidies

To implement the peer effects subsidy for electric cars, I start by calculating the lifetime
CO2 emission damages from adopting a new fossil fuel ϕf and electric car ϕe. The lifetime
CO2 emission damages for fossil fuel and electric cars correspond to the product of average
vehicle emissions, the annual vehicle kilometers traveled, and the average lifespan. Next, I
multiply the CO2 emission damages by the current Swedish carbon tax rate of $126 per ton
of CO2, which approximates the social cost of carbon. The unincorporated lifetime CO2

emission damages are estimated at $3, 370 for fossil fuel cars and $1, 130 for electric cars in
the Swedish fleet. Without accounting for peer effects, the second-best subsidy for electric
cars is $2, 240 in Sweden (column 1, Table 2).43

To compute the peer-induced CO2 emission changes, I combine the CO2 emission dam-
ages with the estimated peer effects on the adoption of fossil fuel θf and electric cars θe

for each peer group (Figure 6). The peer-induced externality changes from the individual’s
electric car adoption imply that peer effects reduce emission damages by $1,482 and suggest
that electric cars may lead to greater emission reductions than expected (columns 2-4, Table
2). Hence, the optimal peer effects subsidy for electric cars should be $3,722 or 66.2% higher
compared to a Pigouvian subsidy without peer effects (columns 5, Table 2). Put differently,
if adopting an electric car reduces total CO2 emissions by 17.8 tons (i.e., the average life-
time emissions difference between a new electric and fossil fuel car), the combined emissions
reductions from all of the individual’s peers would amount to 11.8 tons.

43The range of estimates is close to the second-best subsidy for electric cars of $2, 785 in California
(Holland et al., 2016). Applying the social cost of carbon of $241 per ton, as reported by the Environmental
Protection Agency (2022), the estimated second-best subsidy for electric cars in Sweden also aligns with the
difference of driving CO2 externalities from gasoline and electric vehicles ($6,561) in Allcott et al. (2024).
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As peer effects lead to a greater displacement of fossil fuel cars than the corresponding
increase in electric cars within workplaces and families, the effect on the optimal peer effects
subsidy exceeds the magnitude of the peer effect estimate in both peer groups. This is
because peer effects mitigate externalities not only by displacing fossil fuel with electric cars
but also by reducing fossil fuel cars beyond the individual electric car adoption. Specifically,
peer effects lowered emission damages by $767 among co-workers and $202 among relatives
(corresponding to reductions of 34.3% and 8.9% relative to a Pigouvian subsidy). Among
neighbors, peer effects lead to a one-to-one displacement from fossil fuel to electric cars. This
implies that the optimal peer effects subsidy increases by 22.9%, which is proportional to
the magnitude of peer effects associated with electric car adoption in neighborhoods.

Table 2: Peer effects subsidy

Pigou Subsidy Peer Externalities (−θfΦf − θeΦe) Optimal Peer Subsidy

(Φf − Φe) A. Workplace B. Family C. Neighborhood

2,240 767.4 201.6 513.4 3,722
(34.3%) (8.9%) (22.9%) (66.2%)

Notes: This table presents the components of the optimal peer effects subsidy. Column 1 reports the
optimal Pigouvian subsidy for electric cars. Columns 2 to 4 detail the peer-induced externality changes
associated with fossil fuel and electric cars for each peer group. The %-effects relative to the Pigouvian
subsidy are reported below. Column 5 provides the optimal peer-effects subsidy as derived from Propo-
sition 1. All subsidies and externalities are expressed in real 2021$.

Incorporating peer effects of fossil fuel cars increases the second-best subsidy for electric
cars by the peer-induced emissions of the additional fossil and electric cars (Proposition 2).
If peer effects in fossil fuel cars spur the subsequent adoption of fossil fuel cars, the subsidy
for electric cars should rise to reflect the added emissions. More generally, strong peer effects
for an existing brown technology that reduce demand for a new green technology suggest
the need for a higher subsidy. However, since peer effects for fossil fuel cars only have a
minor impact on subsequent fossil fuel adoption (Table E3), the optimal peer effects subsidy
remains unaffected.

Allowing peer effects to influence the indirect utility of purchasing a new electric car
modifies the optimal subsidy depending on the underlying mechanism ( δW e

δθe
≶ 0). While

information transmission suggests to increase subsidies for electric cars, social reputation
effects justify lower subsidies.44

44If the information provided by peers reduces the uncertainty about the characteristics or the usage of
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VI. Concluding remarks

The transition to EVs is a cornerstone of global decarbonization strategies, with governments
worldwide implementing various subsidy schemes to stimulate EV adoption. However, the
effectiveness of these policies are shaped not only by direct financial incentives but also by
peer effects, which can amplify the transition to cleaner transportation.

This paper provides evidence of peer effects in electric car adoption within workplaces,
families, and neighborhoods. On average, one new electric car causes, in the next quarter,
an additional .094 new electric car acquisitions in the workplace, .023 in the family, and
.22 in the neighborhood. The peer-driven adoption of electric cars displaces the demand for
fossil fuel cars and reflects incremental demand for electric cars rather than intertemporal
substitution of future planned purchases. Furthermore, peer effects result in a transition
towards more environmentally-friendly forms of transportation by encouraging individuals
to adopt cleaner non-electric cars, drive less, and reduce the number of cars.

Finally, the paper outlines an optimal environmental subsidy that incorporates these
peer effects. The conceptual framework highlights that the impact of peer effects on the
optimal subsidy depends on the degree to which peer-induced electric car adoption displaces
fossil fuel cars. When accounting for the peer-induced emission reductions, the findings
suggest that the optimal subsidy should exceed the traditional Pigouvian level by 66.2%.
In addition, information campaigns about leasing electric cars may be an effective comple-
mentary policy, as the empirical findings align with an information transmission mechanism
about financial incentives, leasing contracts, charger infrastructure, and exposure to electric
cars.

electric cars, this increases the indirect utility of adopting a new electric car (Moretti, 2011; Dahl et al.,
2014). As electric car adopters in peer groups diffuse information, the optimal subsidy compensates for
the additional utility that future adopters derive from the information. In contrast, if a peer’s electric car
adoption affects individuals’ indirect utility through social reputation (Benabou & Tirole, 2006, 2011), the
optimal subsidy should reflect its potential to diminish the social prestige associated with electric cars.
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A. Additional summary statistics

Table A1: Descriptive statistics

Mean Std. dev. Min Max Obs.

A.Socio-Demographic Data
Age 47.46 18.27 18 117 73,639,741
Female 0.50 0.50 0 1 73,639,741
Annual Gross Salary (in tho.) 332.67 277.27 0 130,376 51,285,915
Annual Unemployment Days 5.92 34.89 0 366 73,639,741
Self-Employed 0.07 0.26 0 1 73,639,741
Retired 0.20 0.40 0 1 73,639,741
Married or Cohabitant 0.56 0.50 0 1 73,639,741
At Least 1 Child 0.44 0.50 0 1 73,639,741
Years of Education 12.14 2.62 7 20 72,133,961
At least 1 Car 0.41 0.49 0 1 73,639,741
Number of Cars 0.49 0.67 0 3 73,639,741

B.Vehicle Data
Vehicle Kilometers Traveled 11904.59 7641.26 0 497,937 36,197,561
Leased Vehicles (%) 0.02 0.15 0 1 36,197,561
Vehicle Age 10.79 8.75 0 117 36,197,534
Vehicle Weight (kg) 1475.34 266.33 0 17,910 36,197,561
Engine Power (kW) 102.79 38.54 0 1,777 36,197,561
Vehicle Fuel Efficiency (l/100km) 5.95 3.04 0 66 36,197,561
Vehicle Emissions (g CO2/km) 122.31 84.07 0 500 36,197,561

C.Charging Infrastructure Data
Number of Charging Stations 0.36 1.55 0 67 2,104,711
Charging Station Installation 0.04 0.19 0 1 2,104,711
Number of Plug-ins 1.70 17.65 0 1,519 2,104,711
Power Wattage (kWh) 19.13 22.11 0 350 232,448

Notes: Panel A presents individual socio-demographic statistics on the individual-by-year level from
2012 to 2021. Panel B presents descriptive statistics on the Swedish vehicle registry data, which are at the
vehicle-by-year level. Panel C presents descriptive statistics for the charging infrastructure based on the
residential location of individuals at the neighborhood-by-year level between 2012 and 2021. All incomes,
revenues, and costs are expressed in 2021 Swedish kronor.
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Table A2: Summary statistics for the population and EV owners

Population Vehicle Owner

Mean Std. Dev. Car Owner Alt. Fuel Electric

A.Socio Demographic Variables
Age 49.17 18.57 52.70 52.03 51.44
Female 0.50 0.50 0.39 0.36 0.33
Gross Salary (in tho.) 346.25 294.55 394.49 379.68 493.06
Disposable Income (in tho.) 312.88 1800.71 336.57 306.72 448.44
Annual Unemployment Days 11.35 48.57 8.15 8.87 6.54
Self-Employed 0.07 0.26 0.05 0.04 0.06
Married or Cohabitant 0.55 0.50 0.63 0.66 0.76
At Least 1 Child 0.43 0.49 0.34 0.34 0.34
Years of Education 12.28 2.62 12.40 12.55 13.28
Share Commute 0.66 0.48 0.71 0.73 0.78
Distance Commute 39.56 110.50 37.60 36.16 39.52

B.Charging Network
Number of Charging Stations 3.57 6.25 2.78 2.63 2.84
Charging Station Installations 0.20 0.40 0.17 0.16 0.17
Number of Plug-ins 25.62 86.35 16.39 15.04 19.36
Power Wattage (kWh) 11.36 18.21 10.44 10.42 9.81

Number of Observation 7,764,482 3,243,900 179,944 188,371

Notes: This table reports descriptive statistics on socio-demographic variables (Panel A) and the public
charging network (Panel B) for the Swedish working-age population (18 or older) and for three fuel types
of car owners: all car owners, alternative fuel car owners, and electric car owners in 2021.
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Table A3: Peer group statistics

Mean Std. dev. Min Max Obs.

A.Workplace Network
Number of Co-workers 45.37 37.57 5 150 109,259,323
New Car Registrations 7.33 8.61 0 198 109,259,323
New EV Registrations 0.75 1.47 0 70 109,259,323
Number of Lease Renewals 0.72 1.33 0 20 109,259,323

B.Family Network
Number of Relatives 7.34 6.44 1 182 263,032,710
New Car Registrations 0.90 1.51 0 37 263,032,710
New EV Registrations 0.09 0.35 0 12 263,032,710
Number of Lease Renewals 0.10 0.37 0 9 263,032,710

C.Neighborhod Network
Number of Neighbors 261.41 326.20 5 2,794 274,318,310
New Car Registrations 30.48 33.57 0 335 274,318,310
New EV Registrations 2.82 3.86 0 39 274,318,310
Number of Lease Renewals 3.14 4.31 0 44 274,318,310

Notes: The table presents summary statistics for workplaces (Panel A), families (Panel B),
and neighborhoods (Panel C) summed over all periods.
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Table A4: Summary statistics for the population and lessee

Population Vehicle Owner
Mean Std. Dev. Owner New Vehicle Leased Vehicle

A.Socio Demographic Variables
Age 47.47 18.25 51.85 51.27 45.90
Female 0.50 0.50 0.38 0.36 0.41
Gross Salary (in tho.) 333.08 278.31 388.64 452.38 466.20
Disposable Income (in tho.) 260.05 1088.64 281.69 358.89 335.70
Annual Unemployment Days 5.93 34.90 4.19 2.20 3.66
Self-Employed 0.07 0.26 0.05 0.06 0.04
Married or Cohabitant 0.56 0.50 0.65 0.72 0.68
At Least 1 Child 0.44 0.50 0.35 0.34 0.39
Years of Education 12.14 2.62 12.21 12.53 12.91
Share Commute 0.66 0.47 0.71 0.76 0.87
Distance Commute 34.62 99.69 33.31 34.35 33.33

B.Vehicle Attributes
Vehicle Emissions (g CO2/km) 50.09 77.66 122.76 114.91 111.40
Engine Power (kW) 41.47 54.63 101.65 102.62 91.03
Vehicle Fuel Efficiency (l/100km) 2.43 3.40 5.96 5.27 4.92
Service Weight (kg) 599.89 739.61 1470.36 1507.07 1428.81
Electric Car 0.01 0.09 0.02 0.10 0.10
Vehicle Kilometers Traveled 5972.17 9697.31 14638.21 10664.71 15378.45

Number of Observation 73,943,465 30,167,832 1,349,666 869,572

Notes: This table reports descriptive statistics on socio-demographic variables (Panel A) and car attributes (Panel B)
for the Swedish working-age population (18 or older), and for three types of car owners: people owning cars, people buy-
ing new cars, and people leasing cars. A person is included once each year, so the observation number is larger than the
number of unique individuals.
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Figure A1: Share of leased cars

Notes: This figure displays the monthly share of all newly leased cars relative to the total number of new
registrations by individuals in the Swedish vehicle market between 2012 and 2021.
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B. Swedish vehicle reforms

B.1. Vehicle subsidies

Between 2012 and 2021, subsidies for “green” vehicles were implemented through three dis-
tinct policies: the super green car premium (“supermiljöbilspremie”), which was in effect
from January 2012 to June 2018, and two phases of the climate bonus (“klimatbonus”) as
part of the bonus-malus system. The first phase of the climate bonus spanned from July
2018 to December 2019, while the second phase was active from January 2020 to December
2021.45 The Swedish government declared its primary purpose to increase sales and use of
new cars with low climate impact, to contribute to lower CO2 emissions, and to a fossil-
independent vehicle fleet. The financial incentives of the vehicle subsidies with respect to
the CO2 emission level is shown in Figure B1.
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Figure B1: Swedish vehicle subsidies

Low-subsidy period. In September 2011, the Swedish Government approved the “Super
Green Car Rebate” with a budget of 200 million SEK, which effectively started in January
2012 (Ministry of the Environment, 2011). Irrespective of the fuel type, the rebate was
provided to those vehicles with emission levels below 50g/km of CO2. Between 2012 and
2015, individuals received a subsidy of 40,000 SEK for new vehicles fulfilling the emission

45Before my study period, the green car rebate program (“miljöbilspremie”), active from April 2007 to
June 2009, consisted of a 10, 000 SEK transfer to all private individuals six months after buying a vehicle
that is classified as “green.”
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threshold. Between 2016 and June 2018, the maximum rebate of cars with zero CO2 emis-
sions remained at 40,000 SEK, while the purchase of new cars with emission levels between
1-50g/km was rewarded with 20,000 SEK.

Medium-subsidy period. The Swedish Government issued an ordinance in December
2017 about a climate bonus rebate as part of the new bonus-malus system. The amendment
was applied in July 2018 and only affects new vehicles registered in the Road Traffic Register
as of that date (Ministry of the Environment, 2017). The climate bonus applies to vehicles
that emit a maximum of 60 g/km of CO2. For purely electric cars and hydrogen cars with
zero emissions, the highest possible bonus amounts to 60,000 SEK. The bonus is reduced by
833 SEK for every gram of CO2 emitted per kilometer.

High-subsidy period. From January 2020 onward, the CO2 limit for new registrations
to receive a climate bonus has been increased to 70 g/km and the reduction per additional
CO2 emission was replaced by 714 SEK. This change resulted in higher subsidies for plug-
in electric vehicles and included a broader range of plug-in models, as more vehicles could
qualify under the increased CO2 limit. The bonus can not exceed 25% of the price charged
for the new car when the model was first introduced on the Swedish market.

B.2. Private use of a company car

Employers may provide a car fringe benefit if they make available a car they own or lease to
an employee for their private use. Vehicles used exclusively for work-related purposes do not
incur fringe benefits taxation in Sweden if used for private purposes less than 1000 kilometers
and fewer than ten times annually. The fringe benefit value equals 9% of the new car price
(p), a certain percentage of the price base value (PBV ), and 75% of the government bond
interest rate (GB) multiplied by the new car price:

FBV = p · .09 + PBV + .75 · GB · p, (B1)

if the new car price was less than 7.5 times the price base value. Table B1 shows the price
base value, its percentage, and the government bond interest rate required to calculate the
fringe benefit value for each year. The fringe benefit value is added to the employee’s gross
total income, and tax is paid accordingly.

After 2016, or if the price was higher than 7.5 times the price base value, the fringe
benefit value increased by 20% of the price over 7.5 times the price base value, which increases
the value for more expensive cars:

FBV = p · .09 + PBV + .75 · GB · p + .2 · (p− 7.5 · PBV ). (B2)
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This approach, however, would favor petrol and diesel over electric cars, given their com-
paratively lower purchase price. Since the Swedish Government’s decision in 1999 regarding
preferential taxation of green benefit cars (Ministry of Finance, 1999) and the decision on
the reduction in the benefit value for certain green cars in 2001 (Ministry of Finance, 2001),
the taxable value for the private use of company cars is reduced in two steps if the vehicle
runs on alternative fuels and therefore reduces the amount of income taxes that need to be
paid on it. First, the benefit value of the alternative fuel is reduced to the benefit value of
a comparable petrol or diesel car. Second, an additional reduction of 20% to 40% with a
maximum of 8,000 to 16,000 SEK can apply depending on the fuel type and vintage year.

• For battery electric cars, plug-in hybrids and cars driven by gas (not LPG) there is a
reduction of the value for personal income taxation of 40% with a maximum of 16,000
SEK compared to the taxation value of the corresponding or comparable car driven by
petrol or diesel. From 2017, the maximum reduction was decreased to 10,000 SEK.

• For cars driven by LPG, rapeseed oil, or other environmentally adjusted fuels, the
benefit value is the same as for the corresponding petrol or diesel car

If the employer pays for all the fuel, the employee must treat 120% of the value of the fuel
used for private driving as personal income.

Table B1: Fringe benefit values for green cars

Year Price Base
Value (SEK)

% of Price Base
Value

Government Bond
Interest Rate (%)

2012 40,000 31.7 1.65
2013 44,500 31.7 1.49
2014 44,000 31.7 2.09
2015 44,500 31.7 0.90
2016 44,300 31.7 0.65
2017 44,800 31.7 0.50
2018 45,500 29 0.50
2019 46,500 29 0.51
2020 47,300 29 0.50
2021 48,300 29 0.50
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C. Shift-share instrument

C.1. Neural network design

The neural network model in equation (4) used to estimate the propensity of acquiring a new
electric car at the leasing renewal is trained using a stratified training and testing split. I
train the model with 75 % of the quarterly data and use it to predict propensities for 25% of
the test data.46 The neural network is trained using a stochastic gradient descent algorithm
with momentum and an exponential decaying learning rate. The underlying learning rate
parameter is initially set to η = .01, and the learning rate decreases exponentially. When the
weights are updated, I include an exponentially weighted average of the previous updates.
The model learns to approximate the function using 50 training epochs and a batch size of
250. The neural network consists of two hidden layers with layer sizes of 25 and 15. Batch
normalization is used between the hidden layers to re-parametrize the model and standardize
units. The classification metric to train the model is the mean squared error. The model
uses the complete set of control variables.

Figure C1: Propensity score predictions

Notes: The figures display binscatter plots of the predicted against the realized probability to acquire a
new electric car conditional on being at the three-year leasing renewal cutoff for the training data set (black
dot) and the test data set (red cross) in the workplace (Panel A), family (Panel B), and neighborhood (Panel
C). The y-axis plots the actual probability of electric car adoption within 5-percentile bins of predicted peer
electric car adoption. All panels are restricted to individuals at the three-year leasing contract renewal be-
tween 2012 and 2021.

Subsequently, I evaluate how the estimated propensities relate to the realized propen-
sities of electric cars. Figure C1 displays the binscatter plots of the predicted against the
realized probability of acquiring an electric car at the three-year renewal cutoff for both

46It is crucial to test on a held-out data set as training using in-sample data would run the risk of overfitting
the neural network model, which would bias the coefficients of the SSIV towards the OLS coefficients.
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the hold-out test set (“Test”) and the actual training data set (“Training”) in the workplace
(Panel A), family (Panel B), and neighborhood (Panel C). The predicted adoption of electric
cars in the training and test data closely aligns with the 45-degree line, which suggests that
the neural network prediction accurately reflects electric car take-up decisions at the renewal
cutoff. The 5%-binned predicted probabilities to lease a new electric car at the renewal
timing range between 0% and 40%. This highlights the high degree in individual electric car
adoption that is exploited in the SSIV-design.

Another metric used in machine learning to assess the performance of a predictive model
at various thresholds is the ROC-AUC curve. The Receiver Operator Characteristic (ROC)
curve is a probability curve that plots the true positive rate (y-axis) against the false positive
rate (x-axis) at various thresholds. The Area Under the Curve (AUC) score equals the area
under the curve of the formed line and is the measure of a classifier to distinguish between
classes. Intuitively, it corresponds to the probability that a classifier will rank a random
positive example above a random negative one. When the AUC equals one, the classifier can
perfectly distinguish between classes, while .5 reflects a meaningless model that is as good
as random. Figure C2 shows the ROC curves for both the hold-out test set and the actual
training data set in the workplace (Panel A), family (Panel B), and neighborhood (Panel
C). The underlying AUC scores are displayed in Table C1. The trained model achieved a .76
ROC-AUC score in the workplace, .78 in the family, and .78 in the neighborhood on the test
data set that was not used in the training model. This implies an 78% chance I correctly
classify whether the person acquires an electric or non-electric car at the renewal threshold.

Figure C2: ROC-AUC curves

Notes: The figures present Receiver Operating Characteristic (ROC) curves for the estimated probabil-
ities of adopting a new electric car at the contract renewal in the workplace (Panel A), family (Panel B),
and neighborhood (Panel C). The training set is indicated in solid lines, and the test set in dotted lines. All
Panels include individuals at the three-year leasing renewal threshold between 2012 and 2021.
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Table C1: Propensity evaluation

Peer Groups

A.Workplace B.Family C.Neighborhood

ROC-AUC Score
Train Sample .837 .823 .828
Test Sample .817 .808 .81

MSE
Train Sample .035 .036 .036
Test Sample .036 .036 .036

Table C2: Shock summary statistics

Peer Groups

A.Workplace B.Family C.Neighborhood

Mean 0 0 0
Standard Deviation .0196 .0142 .4438
Interquartile range .0017 .0006 .3269

Effective sample size (1/HHI)
Across peer groups and quarters 358,077 85,416 31,777,512

Largest weights
Across peer groups and quarters <.0001 <.0001 <.0001

Observation counts
N(peer group shocks) 27,619 80,817 50,409
N(peer groups) 252,352 7,314,474 4,696

Notes: This table summarizes the distribution of contract renewal timings across workplaces
(column 1), families (column 2), and neighborhoods (column 3). Shocks are measured as the
total number of peers at the three-year leasing contract renewal. Shares are computed as the
propensity of adopting a new electric car using a neural network, as described in equation (4).
All statistics are weighted by the average exposure shares.

C.2. Validity checks

Table C2 reports summary statistics for the contract renewal shocks computed with pre-
dicted propensities across workplaces, families, and neighborhoods. To justify the assump-
tion that there are many conditionally uncorrelated shocks, I document that the average
shock exposure converges to zero, which can be interpreted as exploiting a large effective
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sample size. The effective sample size, measured as the inverse of the Herfindahl index
(HHI) (1/

∑
j,q Pr(V e)2jq), is high: 358,077 across peer group-by-quarter, and the largest

shock weight is below .00001% across peer group-by-quarter. The distribution of shocks
also indicates a sufficient dispersion with a standard deviation of .0196 and an interquartile
range of .0017. This implies a sizable degree of variation at the peer group level, and a few
particular peer groups do not drive the results. As a large number of shocks is key for the
validity of the empirical strategy, the last row indicates that the leasing contract renewal
leverages 27,619, 80,817, and 50,409 shocks to the car adoption in the workplace, family, and
neighborhood.

C.3. Inference of standard errors

To understand how severe the dependencies are in the error term, I follow Eckles et al.
(2016), Zacchia (2020), and Bailey et al. (2022) to explore the robustness of my statistical
inference to various approaches of constructing standard errors.47 Specifically, I compare the
heteroskedasticity-robust standard error to individual, workplace, organization, neighbor-
hood, and the demographic statistical area (DeSO) clustered standard errors in workplaces,
families, and neighborhoods.

Figure C3: Comparison of standard errors

Notes: The figure compares standard errors using various clustering approaches to heteroskedasticity-
robust standard errors for the shift-share IV in workplaces (Panel A), families (Panel B), and neighborhoods
(Panel C). The standard errors are clustered at the individual-level (top row), the neighborhood-level (sec-
ond row), the DeSO area (third row), the workplace (fourth row) and the organization (fifth row).

Figure C3 documents that individual-clustered standard errors are similar in size to
heteroskedasticity-robust standard errors across all peer groups, implying no correlation

47Eckles et al. (2016) and Zacchia (2020) propose to partition the social graph into groups with limited
cross-community dependence, and to cluster the standard errors at the community level.
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across individuals. Standard errors increase by 6.4% in the workplace and 18.4% in the
neighborhood if clustered on the peer-group level, suggesting that standard errors may be
correlated across individuals similarly exposed to the same set of shocks. However, standard
errors are unaffected when moving to the organization- and DeSO-level, indicating that resid-
ual dependencies do not influence standard errors in larger groups. Hence, I cluster standard
errors at respective peer-group level in the non-overlapping workplace and neighborhood.

In the overlapping family peer group, standard errors are .4% larger than the het-
eroscedasticity standard errors when clustered on the individual-level, .3% larger when clus-
tered on the workplace-level, and do not increase when clustered on neighborhood-level. This
implies that standard errors of family members are not correlated across co-worker or neigh-
bor links exposed to the same shocks. To account for the most possible across-individual
dependencies in the error term, I cluster the standard errors on the individual-level in the
family. However, the presence of some across-cluster family links implies that there remains
the potential for across-cluster correlation in the error terms.

C.4. Control group

Figure C4: Probabilities of new cars at leasing renewal

Notes: The figures present the car adoption probabilities for new petrol, diesel, and non-renewals
in the leasing renewal quarter for workplaces (Panel A), families (Panel B), and neighborhoods (Panel
C). All Panels include individuals at the three-year leasing contract renewal between 2012 and 2021.
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D. Regression specifications

D.1. Peer effect dynamics

To estimate the dynamics of peer effects, I expand the horizon over which peer effects are
measured to capture the exact timing of the peer effects. The dependent variable equals
the individual electric car take-up four quarters prior and up to eight quarters following the
initial peer electric car adoption: V e

i,τ for τ = −4, ..., 8. By defining the expiring leasing
contract in q = −1 as the reference quarter, the dynamic reduced form equation can be
written as:

V e
i,q+τ = α+ θeτ

∑
jϵN

V 3y
j,q−1

· P̂ r(V e | V 3y
j,q−1 = 1)+ γXp−i,q + δXi,q + ϕq + εi,q τ ∈ {−4, ..., 8},

(D1)

where θeτ captures the dynamic peer effects four quarters prior and eight quarters following
the peer electric car adoption. θeτ accounts for peer effects’ direct and indirect social forces
and how they unfold over time. The first stage equation (5) remains unchanged as the
exogenous variation comes solely from the contract renewal in q = −1. The underlying
model assumes sequential ordering, which implies that individuals who adopt a new electric
car subsequently affect peers who acquire new electric cars, but not vice versa.

D.2. Carbon emission model

A person’s total car-related CO2 emissions in a given quarter (CO2,i,q) is equal to the vehicle
emissions (V CO2

j ) multiplied by the vehicle kilometers traveled (KMj), summed over all cars
j n quarter q:

CO2,i,q =
∑
jϵJ

V CO2
i,q,j · KMi,q,j (D2)

This can be expressed as the product of the kilometer-weighted average CO2 emission of cars
(V CO2

i,q ), the average kilometer traveled (KMi,q), and the number of cars (Ni.q) according to:

CO2,i,q = KMi,q · V CO2
i,q · Ni.q (D3)

To measure how peer effects in adopting new electric cars influence a person’s car-related
CO2 emission, I differentiate the car-related CO2 emission of each person in equation (D3)
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with respect to the peer electric car adoption (V e
p−i,q−1

) in the following equation (D4):

∂CO2,i,q

∂V e
p−i,q−1︸ ︷︷ ︸

△CO2,i,q

=
∂KMi,q

∂V e
p−i,q−1︸ ︷︷ ︸
θKM

· V CO2
i,q · Ni.q +

∂V CO2
i,q

∂V e
p−i,q−1︸ ︷︷ ︸
θV

· KMi,q · Ni.q

+
∂KMi,q

∂V e
p−i,q−1︸ ︷︷ ︸
θN

· KMi,q · V CO2
i,q (D4)

I can rewrite the impact of peer effects on CO2 emissions as:

△CO2,i,q = θeN · V CO2
i,q · KMi,q︸ ︷︷ ︸
△Cars

+ θeKM · V CO2
i,q · Ni.q︸ ︷︷ ︸

△Driving

+ θeV · KMi,q · Ni.q︸ ︷︷ ︸
△CO2

(D5)

Equation (D5) implies that the change in CO2 emissions resulting from the peer electric
car adoption is equal to the sum of the changes in driving, average vehicle emissions, and
the number of cars. The impact of driving-related CO2 emissions is equal to the effect of
one new electric car on the average kilometers traveled in the peer group multiplied by the
average vehicle emission and the number of cars. Similarly, the impact of CO2 emission-
related changes is equal to the peer effect on the average vehicle emission multiplied by the
average kilometer traveled and the number of cars. Finally, the car-related CO2 emission
changes correspond to the peer effect on the number of new cars multiplied by the average
vehicle emission and the kilometers traveled.

To empirically estimate the peer effects on the vehicle emissions θV , the vehicle kilome-
ters traveled θKM , and the number of cars θN , I regress the individual vehicle emission per
kilometer (V CO2

i,q ), the average kilometers traveled (KMi,q), and the number of cars (Ni.q) in
quarter q on the number of newly registered electric cars in the previous quarter q−1 in peer
group p, conditional on all individual and peer group characteristics. Equations (D6), (D7),
and (D8) state the underlying regression specifications:

V CO2
i,q = α + θVq V

e
p−i,q−1

+ γXp−i,q + δXi,q + ϕq + εi,q, (D6)

KMi,q = α + θKM
q V e

p−i,q−1
+ γXp−i,q + δXi,q + ϕq + εi,q, (D7)

Ni.q = α + θNq V
e
p−i,q−1

+ γXp−i,q + δXi,q + ϕq + εi,q. (D8)

As the CO2 emission model solely changes the outcome of interest, the first stage equation
(5) remains unchanged.
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D.3. Fossil fuel peer effects

To estimate peer effects from fossil fuel cars, I additionally fit models for petrol and diesel
cars m = {Petrol,Diesel}. To construct the SSIV for the adoption of petrol and diesel cars,
I interact a dummy indicating if the person is at the three-year contract renewal with their
estimated propensity to adopt the corresponding fuel type in the renewal quarter (P̂ r(V m |
V 3y

j,q−1 = 1)). I predict the adoption propensities for petrol and diesel cars using the same
neural network from equation (4). Then, I construct the propensity-weighted sum of control
renewals and the number of new diesel and petrol cars as follows:

V̂p−1,q−1 =
∑
jϵN

V 3y
j,q−1

· P̂ r(V m | V 3y
j,q−1 = 1) (D9)

V m
p−1,q−1

=
∑
jϵN

V m
j,q−1

(D10)

To control for the composition of people’s peers and their car preferences, I add a control for
the average propensity to lease a new car of each fuel type m for all leasing peers within a
peer group (Pr(V m | 1V l

j = 1)q,j). Accordingly, I fit a first stage equation (D11) and reduced
form equation (D12) for petrol and diesel cars:

V m
p−i,q−1

= αmV̂p−1,q−1 + δXi,q + γXp−i,q + δ2 Pr(V m | V l,g
j = 1)q−1,j + ϕq + ui,q−1

(D11)

V m
i,q = βmV̂p−1,q−1 + δXi,q + γXp−i,q + δ2 Pr(V m | V l,g

j = 1)q−1,j + ϕq + ui,q−1

(D12)

The indicator variable V m
i,q captures whether individual i adopts a new car of vehicle fuel

type m in quarter q. The peer coefficient θm(αm/βm) measures the effect of the number of
new cars of fuel type m in the peer group in the previous quarter on whether the person
adopts a new car of fuel type m in the current quarter.
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E. Additional peer effect results

Figure E1: First stage coefficient plots

Notes: The figures present point estimates and 95%-confidence intervals of the first stage in workplaces
(Panel A), families (Panel B), and neighborhoods (Panel C) using the contract renewal as an instrument.
The y-axis plots peer group new car adoption within bins of peers at the leasing contract renewal. Both
relationships are residual of the control variables: individual-demographic variables, peer group character-
istics, chargings infrastructure, past car choices, and quarter-fixed effects. The slope coefficients α and the
standard errors come from the first stage regression in equation (5). The first stage F-statistics are derived
from a peer group level IV regression of the residualized number of new peer electric cars on the number of
expiring peer leasing contracts.

Figure E2: Peer effect heterogeneity by demographic characteristics

Notes: The figures display peer effects, split by demographic characteristics of the peer group, using the
propensity-weighted leasing contract renewal instrument in equation (1) for the workplace (Panel A), family
(Panel B), and the neighborhood (Panel C). The dependent variable indicates the number of new electric
cars in the peer group in a given quarter. 95%-confidence intervals are indicated through the error bars.
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Figure E3: Peer effect dynamics of new cars

Notes: The figure displays the peer effect dynamics for new cars in the workplace (Panel A), family (Panel
B), and neighborhood (Panel C). The dependent variable indicates the number of new cars in the peer group
in a given quarter. The dashed line between period -1 and 0 refers to the peer car adoption period. The IV
coefficients capture the total effect of peer car adoption induced by the leasing contract renewal in quarter
q=-1. 95%-confidence intervals reflect robust standard errors, clustered by plants in Panel A, individuals in
Panel B, and neighborhoods in Panel C.

Figure E4: Peer effects for constant groups

Notes: The figure displays the peer effect dynamics for people who remained in the same peer group
throughout the entire horizon in the workplace (Panel A), family (Panel B), and neighborhood (Panel C).
The dependent variable indicates the number of new electric cars in the peer group in a given quarter. The
dashed line between periods -1 and 0 refers to the peer electric car adoption period. The red lines capture
the total effect of peer car adoption induced by the leasing contract renewal in quarter q=-1. 95%-confidence
intervals reflect robust standard errors, clustered by plants in Panel A, individuals in Panel B, and neigh-
borhoods in Panel C.
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Table E1: Peer effects for new cars

OLS Second Stage

(1) (2) Total (3) Per Capita

A.Workplace Network
New Peer Car .0384*** .0123* .0003*

(.0027) (.0067) (.0001)
%-Effect .41 .13 .13
Mean Dep. Variable .209 .209 .209

B.Family Network
New Peer Car .0110*** .0087*** .0012***

(.0002) (.0021) (.0003)
%-Effect 4.89 3.88 3.88
Mean Dep. Variable .031 .031 .031

C.Neighborhood Network
New Peer Car .0305*** .0374*** .0001***

(.0015) (.0086) (.0000)
%-Effect .01 .01 .01
Mean Dep. Variable 1.063 1.063 1.063

Notes: This table presents the regression estimates of peer effects for all
new cars in workplaces (Panel A), families (Panel B), and neighborhoods
(Panel C). Column (1) presents OLS estimates from the regression, columns
(2) and (3) reflect the second stage estimation using the contract renewal
instrument. The dependent variable in columns (1), and (2) indicates the
number of new cars in the peer group in a given quarter. The dependent
variable in column (3) divides the total effects by the size of the peer group,
which gives an estimate of the peer effect “per capita.” All regressions in-
clude individual demographic, past car attributes, peer group demographic
control variables, and quarter-fixed effects. The %-effects and the mean de-
pendent variables are reported below the coefficients. The unit of observa-
tion is individual×quarter. The time period reaches from 2012 until 2021.
Robust standard errors, clustered by plants in Panel A, individuals in Panel
B, and neighborhoods in Panel C, are in parentheses. *, **, ***: statisti-
cally significant with 90%, 95%, and 99% confidence, respectively.
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Table E2: Peer effects by EV type

Electric Vehicle Type

(1) Hybrid (2) Plug-In & Battery (3) Any Electric

A.Workplace Network
New Peer Hybrid Car .0489 -.2887*** -.2398***

(.0369) (.0693) (.0774)
New Peer Plug-In Car -.0187*** .1988*** .1801***

(.0032) (.0382) (.0380)
Mean Dep. Variable .006 .015 .021

B.Family Network
New Peer Hybrid Car -.0045 -.0226*** -.0271***

(.0049) (.0074) (.0089)
New Peer Plug-In Car -.0015** .0341*** .0327***

(.0007) (.0094) (.0094)
Mean Dep. Variable .001 .002 .003

C.Neighborhood Network
New Peer Hybrid Car .0542 -.0293 .0248

(.0465) (.0383) (.0610)
New Peer Plug-In Car -.0529*** .8435*** .7906***

(.0068) (.0787) (.0775)
Mean Dep. Variable .036 .073 .109

Notes: This table presents the peer effect results for hybrid and plug-in electric cars for the
workplace (Panel A), family (Panel B), and neighborhood (Panel C). The dependent variable in-
dicates the number of new hybrid (column 1), plug-in (column 2), and all new cars (column 3) in
the peer group. The independent variable measures the number of new hybrid and plug-in cars in
the peer group in the previous quarter. All regressions include individual demographic, past car
attributes, charging infrastructure, peer group demographic control variables, and quarter-fixed
effects. The unit of observation is individual×quarter. The time period reaches from 2012 until
2021. Robust standard errors, clustered by plants in Panel A, individuals in Panel B, and neigh-
borhood in Panel C, are in parentheses. *, **, ***: statistically significant with 90%, 95%, and
99% confidence, respectively.
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Table E3: Fossil fuel peer effects

Vehicle Type

(1) Fossil (2) Electric (3) New Cars

A.Workplace Network
New Peer Fossil Car .0135 -.1137*** -.0987**

(.0365) (.0229) (.0416)
Mean Dep. Variable .188 .021 .21

B.Family Network
New Peer Fossil Car .0613*** -.0916*** -.0307

(.0231) (.0211) (.0308)
Mean Dep. Variable .027 .003 .031

C.Neighborhood Network
New Peer Fossil Car .3185 -.3112** -.3270

(.2633) (.1365) (.2083)
Mean Dep. Variable .95 .109 1.063

Notes: This table presents the peer effect results for fossil fuel cars for the
workplace (Panel A), family (Panel B), and neighborhood (Panel C). The de-
pendent variable indicates the number of new fossil fuel (column 1), electric
(column 2), and all new cars (column 3) in the peer group. The independent
variable measures the number of new fossil fuel cars in the peer group in the
previous quarter. All regressions include individual demographic, past car at-
tributes, charging infrastructure, peer group demographic control variables,
and quarter-fixed effects. The unit of observation is individual×quarter. The
time period reaches from 2012 until 2021. Robust standard errors, clustered
by plants in Panel A, individuals in Panel B, and neighborhood in Panel C,
are in parentheses. *, **, ***: statistically significant with 90%, 95%, and
99% confidence, respectively.
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Appendix Tebbe

Table E7: Alternative outcomes of peer effects

Vehicle Ownership Second-Hand

(1)Weight (2)Engine (3)Fuel (4) Electric

A.Workplace Network
New Peer Electric Car -3.822 -1.218* -0.118*** 0.012

(9.686) (0.707) (0.039) (0.016)
Mean Dep. Variable 643.7 44.79 2.63 .019

B.Family Network
New Peer Electric Car -39.038*** -3.338*** -.130** .003

(14.972) (1.121) (.066) (.006)
Mean Dep. Variable 611.81 42.38 2.49 .002

C.Neighborhod Network
New Peer Electric Car -5.883** -.658*** -.071*** .024

(2.393) (.182) (.011) (.019)
Mean Dep. Variable 590.01 40.82 2.41 .094

Notes: This table presents the regression estimates of peer effects on three car characteris-
tics for workplaces (Panel A), families (Panel B), and neighborhoods (Panel C). The outcome
of interest is equal to three average car characteristics per person one year after the peer elec-
tric car adoption: (1) weight [kilogram], (2) engine power [kilowatt], and (3) fuel efficiency
[liter/100km]. All regressions include individual demographic, past car attributes, charging
infrastructure, peer group demographic control variables, and quarter-fixed effects. The unit
of observation is individual×quarter. The time period reaches from 2012 until 2021. Robust
standard errors, clustered by plants in Panel A, individuals in Panel B, and neighborhoods
in Panel C, are in parentheses. *, **, ***: statistically significant with 90%, 95%, and 99%
confidence, respectively.
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Figure E5: Peer effects on CO2 emissions

Notes: This figure presents the peer effect of one new electric car on the total CO2 emission
for workplaces (Panel A), families (Panel B), and neighborhoods (Panel C). The dependent vari-
able indicates the total carbon emission normalized to one in quarter zero. All regressions in-
clude individual demographic, past car attributes, charging infrastructure, peer group demographic
control variables, and quarter-fixed effects. The unit of observation is individual×quarter. The
time period reaches from 2012 until 2021. 95%-confidence intervals reflect robust standard er-
rors, clustered by plants in Panel A, individuals in Panel B, and neighborhoods in Panel C.

Figure E6: Peer effects in fossil fuel cars

Notes: This figure presents the peer effect results for petrol, diesel, and electric cars for the workplace
(Panel A), family (Panel B), and neighborhood (Panel C). The dependent variable indicates the number of
new electric cars in the peer group in a given quarter. The independent variable measures the number of new
petrol, diesel, and electric cars in the peer group in the previous quarter. The %-effects are reported to the
right of the confidence intervals. All regressions include individual demographic, past car attributes, charging
infrastructure, peer group demographic control variables, and quarter-fixed effects. The unit of observation
is individual×quarter. The underlying regression specifications for peer eects in petrol, and diesel cars are
documented in Section D.3. The time period reaches from 2012 until 2021. 95%-confidence intervals reflect
robust standard errors, clustered by plants in Panel A, individuals in Panel B, and neighborhoods in Panel C.
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Figure E7: Peer effects for subsidy period

Notes: This figure presents the peer effect results for three different subsidy periods for the workplace
(Panel A), family (Panel B), and neighborhood (Panel C). The dependent variable indicates the num-
ber of new electric cars in the peer group in a given quarter. I separate the sample into three periods:
a low-subsidy period (from January 2012 to June 2018), a medium-subsidy period (July 2018 to Decem-
ber 2019), and a high-subsidy period (from January 2020). The %-effects are reported to the right of the
confidence intervals. All regressions include individual demographic, past car attributes, charging infras-
tructure, peer group demographic control variables, and quarter-fixed effects. The unit of observation is
individual×quarter. The time period reaches from 2012 until 2021. 95%-confidence intervals reflect robust
standard errors, clustered by plants in Panel A, individuals in Panel B, and neighborhoods in Panel C.

Figure E8: Peer effects by public charger and building type

Notes: This figure presents the peer effect results for electric (green), plug-in (red), and hybrid cars (blue)
in neighborhoods for peer groups with and without public charging infrastructure (Panel A), and peer groups
living in houses and apartments (Panel B). The dependent variable indicates the number of new electric cars
in the peer group in a given quarter. The independent variable measures the number of new electric, plug-
in, and hybrid cars in the peer group in the previous quarter. The size of the peer groups is documented
along the y-axis. The %-effects are reported to the right of the confidence intervals. All regressions include
individual demographic, past car attributes, charging infrastructure, peer group demographic control vari-
ables, and quarter-fixed effects. The unit of observation is individual×quarter. The time period reaches
from 2012 until 2021. 95%-confidence intervals reflect robust standard errors, clustered by neighborhoods.
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Figure E9: Peer effects by usage

Notes: This figure presents the peer effect results for different levels of usage for the work-
place (Panel A), family (Panel B), and neighborhood (Panel C). The dependent variable indicates
the number of new electric cars in the peer group in a given quarter. I separate the independent
variable into electric cars with three levels of usage: low usage (<8.000km), medium usage (8.000-
12.000km), and high usage (>12.000km). The %-effects are reported to the right of the confidence
intervals. All regressions include individual demographic, past car attributes, charging infrastruc-
ture, peer group demographic control variables, and quarter-fixed effects. The unit of observation is
individual×quarter. The time period reaches from 2012 until 2021. 95%-confidence intervals reflect ro-
bust standard errors, clustered by plants in Panel A, individuals in Panel B, and neighborhoods in Panel C.

Figure E10: Peer effects by electric car ownership level

Notes: This figure presents the peer effect results for different electric car ownership levels for
the workplace (Panel A), family (Panel B), and neighborhood (Panel C). The low, medium, and
high categories represent the bottom, middle, and top third of electric car ownership in the respec-
tive peer group. The %-effects are reported to the right of the confidence intervals. All regres-
sions include individual demographic, past car attributes, charging infrastructure, peer group demo-
graphic control variables, and quarter-fixed effects. The unit of observation is individual×quarter.
The time period reaches from 2012 until 2021. 95%-confidence intervals reflect robust standard
errors, clustered by plants in Panel A, individuals in Panel B, and neighborhoods in Panel C.
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Figure E11: Peer effects by peer group emission

Notes: This figure presents the peer effect results for peer groups with low- and high-carbon emis-
sions of the vehicle fleet for the workplace (Panel A), family (Panel B), and neighborhood (Panel
C). The dependent variable indicates the number of new electric cars in the peer group in a given
quarter. I split the sample into peer groups with a low and high average carbon-emitting vehi-
cle fleet. All regressions include individual demographic, past car attributes, charging infrastruc-
ture, peer group demographic control variables, and quarter-fixed effects. The unit of observation is
individual×quarter. The time period reaches from 2012 until 2021. 95%-confidence intervals reflect ro-
bust standard errors, clustered by plants in Panel A, individuals in Panel B, and neighborhoods in Panel C.
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Table E8: Peer effects in leasing contracts

Lease Contracts Purchases

(1) New (2) Expiring (3) Early (4) New

A.Workplace Network
New Peer Electric Car .0233* .0073 .0125 .0174

(.0142) (.0055) (.0077) (.0115)
Mean Dep. Variable .009 .001 .001 .01

B.Family Network
New Peer Electric Car .0218*** .0024 .0040 -.0006

(.0067) (.0024) (.0027) (.0040)
Mean Dep. Variable .001 0 0 .002

C.Neighborhood Network
New Peer Electric Car .1513*** .0477*** .0399*** .0489***

(.0218) (.0101) (.0089) (.0158)
Mean Dep. Variable .039 .007 .005 .058

Notes: This table presents the regression estimates of peer effects for different leasing
contract renewals in workplaces (Panel A), families (Panel B), and neighborhoods (Panel
C). The dependent variables in columns (1), (2), and (3) indicate the number of new elec-
tric cars with a new leasing contract, at the three-year leasing renewal, and renewed be-
fore the leasing renewal, respectively. Column (4) refers to new electric car purchases. All
regressions include individual demographic, past car attributes, charging infrastructure,
peer group demographic control variables, and quarter-fixed effects. The mean dependent
variables is reported below the coefficients. The unit of observation is individual×quarter.
The time period reaches from 2012 until 2021. Robust standard errors, clustered by plants
in Panel A, individuals in Panel B, and neighborhoods in Panel C, are in parentheses. *,
**, ***: statistically significant with 90%, 95%, and 99% confidence, respectively.
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Table E9: Alternative specifications checks of peer effects

A. Workplace B. Family C. Neighborhood

(1) 2SLS (2) 2SLS (3) 2SLS

Peer Effect Estimate:
Baseline .0944*** .0234*** .2240***

(.0235) (.0082) (.0295)
Functional Form:

Percentage Influence .1395*** .0036*** 1.4979***
(.0247) (.0011) (.1401)

Binary Influence .0059*** .0242*** .0450***
(.0004) (.0085) (.0017)

Control Variables:
Peer Group FE .0833*** .0220*** .2250***

(.0236) (.0085) (.0297)
Sample Restriction:

Peer Leasing .0724** .0263*** .2733***
(.0359) (.0090) (.0424)

One Peer Lease Renewal .0943*** .0289* .2222**
(.0332) (.0151) (.1101)

Network Structure:
No Overlap .0744*** .0184*** .2174***

(.0204) (.0061) (.0337)

Notes: This table presents the regression estimates of peer effects for various alterna-
tive specifications in workplaces (Panel A), families (Panel B,) and neighborhoods (Panel
C). The dependent variable in columns (1), (2), and (3) indicates the number of new elec-
tric cars in the peer group in a given quarter. All regressions include individual demo-
graphic, past car attributes, charging infrastructure, peer group demographic control vari-
ables, and quarter-fixed effects. The unit of observation is individual×quarter. The time
period reaches from 2012 until 2021. Robust standard errors, clustered by plants in Panel
A, individuals in Panel B, and neighborhoods in Panel C, are in parentheses. *, **, ***:
statistically significant with 90%, 95%, and 99% confidence, respectively.
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Table E10: Peer effects for placebo peer groups

OLS First Stage Second Stage

(1) (2) (3) Total (4)Per Capita

A.Workplace Network
Firm Co-worker -.0127*** 7.8709*** -.0541 -.0001

(.0037) (1.9308) (.0884) (.0002)
Mean Dep. Variable .154 .154 .154 .154

Future Co-worker .0005 1.1995*** .0071 .0007
(.0006) (.1925) (.0243) (.0022)

Mean Dep. Variable .005 .005 .005 .005

C.Neighborhood Network
Future Neighbor .0014 1.2396*** .0168 .0002

(.0012) (.1594) (.0421) (.0004)
Mean Dep. Variable .041 .041 .041 .041

Notes: This table presents the regression estimates of peer effects for placebo peer groups
in workplaces (Panel A) and neighborhoods (Panel C) using the contract renewal timing
instrument. Column (1) presents OLS estimates from the regression in equation (1), col-
umn (2) equals the first stage estimation of equation (5), and column (3) and (4) reflect the
second stage estimation. The dependent variable in columns (1), (2), and (3) indicates the
number of new electric cars in the peer group in a given quarter. The dependent variable in
column (4) divides the total effects by the size of the peer group, which gives an estimate
of the peer effect “per capita.” The placebo co-workers are: 1. Firm-level co-workers: In-
dividuals employed in the same firm, two-digit industry, and region, but who do not work
in the same plant; 2. Future co-workers: Individuals who switch into the same workplace
in the future. The placebo neighbors are future neighbors that move into the same neigh-
borhood. All regressions include individual demographic, past car attributes, charging in-
frastructure, peer group demographic control variables, and quarter-fixed effects. The unit
of observation is individual×quarter. Robust standard errors, clustered by plants in Panel
A, individuals in Panel B, and neighborhoods in Panel C, are in parentheses. *, **, ***:
statistically significant with 90%, 95%, and 99% confidence, respectively.
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Table E11: Varying machine learning techniques

Machine Learning Prediction

(1) Logistic (2) Lasso (3) Random Forrest

A.Workplace Network
New Peer Electric Car .1249*** .1081*** .0627**

(.0273) (.0226) (.0263)

B.Family Network
New Peer Electric Car .0489*** .0366*** .0103**

(.0128) (.0107) (.0045)

C.Neighborhood Network
New Peer Electric Car .1979*** .2016*** .1237***

(.0298) (.0233) (.0440)

Notes: This table presents the regression estimates of peer effects for alternative pre-
dictions of exposure shares in workplaces (Panel A), families (Panel B), and neighbor-
hoods (Panel C). Columns (1), (2), and (3), present the second stage estimation using
a logistic regression, a LASSO regression, and a random forrest to predict the propen-
sity of electric car adoption at the renewal threshold.The dependent variable indicates
the number of new electric cars in the peer group in a given quarter. All regressions
include individual demographic, past car attributes, charging infrastructure, peer group
demographic control variables, and quarter-fixed effects. The unit of observation is
individual×quarter. The time period reaches from 2012 until 2021. Robust standard er-
rors, clustered by plants in Panel A, individuals in Panel B, and neighborhoods in Panel
C, are in parentheses. *, **, ***: statistically significant with 90%, 95%, and 99% con-
fidence, respectively.
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Table E12: Varying horizon of peer effects

Second Stage Horizon

(1) 1 Quarter (2) 2 Quarters (3) 3 Quarters (4) 4 Quarters

A.Workplace Network
New Peer Electric Car .0947*** .1186*** .1293*** .2347***

(.0235) (.0273) (.0293) (.0461)

B.Family Network
New Peer Electric Car .0234*** .0276*** .0372*** .0102

(.0082) (.0092) (.0135) (.0096)

C.Neighborhood Network
New Peer Electric Car .2242*** .1711*** .1441*** .2476***

(.0295) (.0272) (.0243) (.0336)

Notes: This table presents the regression estimates of peer effects for varying time horizons in work-
places (Panel A), families (Panel B), and neighborhoods (Panel C). The dependent variable in columns (1),
(2), (3), and (4) indicates the number of new electric cars in the peer group in a given quarter, 2-quarters,
3-quarters, and 4-quarters. All regressions include individual demographic, past car attributes, charging in-
frastructure, peer group demographic control variables, and quarter-fixed effects. The unit of observation
is individual×quarter. The time period reaches from 2012 until 2021. Robust standard errors, clustered by
plants in Panel A, individuals in Panel B, and neighborhoods in Panel C, are in parentheses. *, **, ***: sta-
tistically significant with 90%, 95%, and 99% confidence, respectively.
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Table E13: Peer effects for different control groups

OLS First Stage Second Stage

(1) (2) Total(3) Per Capita(4)

A.Workplace Network
Non-Renewal .0455*** 1.4133*** .1031*** .0023***

(.0073) (.0767) (.0240) (.0005)
Fossil Fuel Car .0456*** 1.2463*** .1250*** .0028***

(.0074) (.0725) (.0246) (.0005)

B.Family Network
Non-Renewal .0091*** 1.0876*** .0526*** .0072***

(.0005) (.0107) (.0082) (.0011)
Fossil Fuel Car .0091*** 1.0116*** .0601*** .0082***

(.0005) (.0101) (.0083) (.0011)

C.Neighborhood Network
Non-Renewal .0371*** 2.1552*** .2476*** .0009***

(.0024) (.1107) (.0318) (.0001)
Fossil Fuel Car .0369*** 1.9217*** .2459*** .0009***

(.0024) (.1067) (.0298) (.0001)

Notes: This table presents the regression estimates of peer effects different con-
trol groups in workplaces (Panel A), families (Panel B), and neighborhoods (Panel
C). The non-renewal control group consists of individuals who do not renew the
leasing contract (i.e., retain or return the three-year old car). The fossil fuel con-
trol group comprises individuals who adopt a new petrol or diesel car at the renewal
threshold. Column (1) presents OLS estimates from the regression in equation (1),
column (2) equals the first stage estimation of equation (5), and column (3) and
(4) reflect the second stage estimation. The dependent variable in columns (1), (2),
and (3) indicates the number of new electric cars in the peer group in a given quar-
ter. The dependent variable in column (4) divides the total effects by the size of the
peer group, which gives an estimate of the peer effect “per capita.” All regressions
include individual demographic, past car attributes, charging infrastructure, peer
group demographic control variables, and quarter-fixed effects. The unit of observa-
tion is individual×quarter. The time period reaches from 2012 until 2021. Robust
standard errors, clustered by plants in Panel A, individuals in Panel B, and neigh-
borhoods in Panel C, are in parentheses. *, **, ***: statistically significant with
90%, 95%, and 99% confidence, respectively.
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F. Details on optimal peer effect subsidy

F.1. Proof of proposition 1.

I assume that the choice of car is influenced by i.i.d. random variables εe and εf drawn
from a common extreme value distribution with zero expected value and standard deviation
proportional to a scale parameter µ. Define the utilities as:

U f = W f + εf ,

U e = W e + εe.

A consumer selects the fossil fuel car if U f > U e, occurring with probability

π ≡ Pr(U f > U e) =
exp(W

f

µ
)

exp(W
f

µ
) + exp(W

e

µ
)
.

The expected utility of a new car purchase is given by:

E[max[U e, U f ]] = µln(exp(
W f

µ
) + exp(

W e

µ
)).

Let Φf = ϕfKM f and Φe = ϕeKM e, where ϕf and ϕe are the sum of unincorporated
marginal externalities (in $ per kilometer) from driving a fossil fuel and electric car car. Let
F = πKM f , E = (1 − π)KM e, and H = (1 − π)KM f . Suppose a policymaker optimizes
the welfare function given in equation (11) by setting a subsidy τ for electric cars. Taking
the derivative of W with respect to τ:

∂W
∂τ

= (1− π) +
∂R

∂τ
+−(ϕf (

∂F

∂τ
+

∂H

∂τ
θf ) + ϕe∂E

∂τ
(1 + θe)) = 0.

Given that expected tax revenue is R = −τ(1− π), we have:

∂R

∂τ
= −(1− π) + τ

∂π

∂τ
.

Substituting this into the first-order condition:

τ
∂π

∂τ
− ((ϕf (

∂F

∂τ
+

∂H

∂τ
θf ) + ϕe∂E

∂τ
(1 + θe)) = 0.

Solving for τ :

τ =
ϕf (∂F

∂τ
+ ∂H

∂τ
θf ) + ϕe ∂E

∂τ
(1 + θe)

∂π
∂τ

.

Taking the derivative of F , E, and H, we have:
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∂F

∂τ
=

∂KM f

∂τ
π +KM f ∂π

∂τ
= KM f ∂π

∂τ
,

∂E

∂τ
=

∂KM e

∂τ
(1− π)−KM e∂π

∂τ
= −KM e∂π

∂τ
,

∂H

∂τ
=

∂KM f

∂τ
(1− π)−KM f ∂π

∂τ
= −KM f ∂π

∂τ
,

where the second equality follows from the fact that there are no income effects (i.e., ∂KMf

∂τ
=

∂KMe

∂τ
= 0). Substituting these into the first-order condition for τ and let Φf = ϕfKM f and

Φe = ϕeKM e, we have:

τ ∗ = Φf − Φe︸ ︷︷ ︸
△Marginal Externalities

− Φfθf − Φeθe︸ ︷︷ ︸
△Peer EV s

■

F.2. Peer effects in fossil fuel cars

In addition to the peer effects in electric car adoption, the policymaker may also incorporate
how peer effects in fossil fuel car adoption affect the subsidy τ on electric cars. The peer
effects in fossil fuel car adoption measures how one new fossil fuel car influences new fossil
fuel (θff ) and electric car acquisitions (θef ) in the peer group (Table E3). The subscript refers
to the vehicle adoption of peers, the superscript refers to persons’ own vehicle adoption.
To incorporate peer effects in both electric and fossil fuel car adoptions, the policymaker
optimizes the welfare function given by:

Wf = µ(ln(exp(
W e

µ
) + exp(

W f

µ
))) + R − (π(Φf (1 + θff ) + Φeθef )

+ (1− π)(Φe(1 + θe) + Φfθf )). (F1)

Following the same steps as outlined above, we derive the following proposition that incor-
porates the peer-induced externality changes of fossil fuel cars:

Proposition 2. The second-best subsidy for electric cars that internalizes how peer effects
in electric and fossil fuel car adoption influence the subsequent acquisition of electric and
fossil fuel cars is given

τ f = Φf − Φe︸ ︷︷ ︸
△Marginal Externalities

− Φfθf − Φeθe︸ ︷︷ ︸
△Peer EV s

+ Φfθff + Φeθef︸ ︷︷ ︸
△Peer Fossil
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