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Abstract 21	
Many workplaces and other institutions are grappling with how to support their employees and other 22	
constituents who drive electric vehicles (EVs) by providing local charging services.  We develop a novel 23	
driver-centric approach for designing EV charging networks that estimates constituents' charging needs 24	
based on their driving and charging habits and determines the optimal number and type of chargers to 25	
install to meet these needs.  Unlike prior literature, we explicitly incorporate the behavior of an 26	
institution’s commuters.  We demonstrate our approach at the University of California San Diego 27	
(UCSD) EV network of 439 charging ports using behavioral data derived from 800 unique EV drivers.  28	
Using these driver behaviors significantly affects network usage and optimal design—for example, 29	
implying fivefold more workplace charging sessions and a threefold larger charging network compared 30	
to a similar analysis based on regionally-averaged data (a common approach).  Drivers’ tendency to 31	
recharge with high battery state-of-charge dominates, increasing network size by 50% alone, while also 32	
implying less need for high-capacity chargers.  Institutions’ goals for supporting drivers, which are 33	
important for equity, also significantly affect commuters’ network usage and network design.  Our 34	
approach can help guide institutional strategy for deploying and expanding real-world workplace and 35	
destination-based charging services.   36	
 37	
  38	
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1. Introduction 39	
 40	

Societal shifts from gasoline to electric vehicles (EVs), already well underway in numerous 41	
countries (Hanna and Victor, 2021), are pivotal to cutting greenhouse gas (GHG) emissions from 42	
transportation (Jaramillo et al., 2022).  Although the shift to EVs has occurred in tandem with home 43	
charging (LaMonaca and Ryan, 2022), workplace charging remains crucially important for at least two 44	
reasons (Bauer et al., 2021).  First, whereas early EV adopters tend to be wealthier homeowners (Tal et 45	
al., 2020), later mass adopters will likely have less access to private home charging (Pierce and Slowik, 46	
2023; Chakraborty et al., 2019) and thus rely more on alternatives like workplace networks.  Second, to 47	
minimize vehicle emissions, EVs must charge when renewable energy generation is abundant.  In 48	
California and other solar-dominant grids, that means daytime when most drivers are at work (Coignard 49	
et al., 2018).   50	
 Meanwhile, a growing number of institutions (corporations, public entities, universities) have 51	
committed to net-zero carbon goals (Erb et al., 2021).  To reduce GHG emissions associated with 52	
commuting (known as “Scope 3” emissions—perhaps 17% of emissions at U.S. universities; Klein-53	
Banai and Theis, 2013), they are encouraging a switch to EVs by installing workplace charging 54	
facilities.   55	

Despite a desire to support workplace charging, institutions are struggling with how to set goals 56	
for supporting EV drivers and implement charging policy to cost-effectively meet those goals.  At such 57	
motivated institutions, decision-makers must grapple with several strategic planning questions: how 58	
much charging do constituents need?  How many parking stalls should be “electrified,” i.e. converted to 59	
EV stalls or EV-ready stubouts, to meet these needs?  Which kinds of chargers should be installed?  60	
What is the optimal charger “dwell time,” which limits charging session duration but may increase 61	
overall utilization of the network?   62	
 These questions form the essence of the workplace EV network planning problem (Section 2) 63	
that most EV-supporting institutions will likely face—and our focus in this paper.  The aim is to design 64	
an EV charger network that reliably meets drivers’ charging needs at minimal cost.   65	

The literature on the design of EV charging infrastructure is extremely rich.  It includes studies 66	
focused on the supply side, e.g. on designing networks to achieve technical goals, such as integrating 67	
renewable energy (Fachrizal et al., 2022; Hassan et al., 2023), alleviating grid congestion (Gonzalez-68	
Garrido et al., 2024), and integrating chargers in microgrids (Hafez and Bhattacharya, 2017), as well as 69	
on charging strategies that achieve similar goals (Gong et al., 2020).  It also includes studies on the 70	
demand side, e.g. understanding drivers’ charging patterns (Helmus, Lees, & van den Hoed, 2020) as 71	
well as preferences (Delmonte et al., 2020) and motivations (Sun et al., 2021) for charging.  This paper 72	
is unique in that it integrates supply and demand by building a new optimization algorithm for 73	
workplace-wide network design based on bottom-up calculations of drivers’ demand for workplace 74	
charging.  75	

In our framing, answers to the workplace EV network planning problem depend pivotally on the 76	
behaviors, habits, and preferences of drivers who commute regularly and would use the workplace EV 77	
network.  We focus on human behavior because it shapes infrastructure needs, yet existing planning 78	
models for workplace EV networks have ignored it (Erdogan et al., 2021), bypassed it by using idealized 79	
or average behavior (Huang and Zhou, 2015; Li et al., 2020; Erdogan, Kucuksari, and Murphy, 2022; 80	
Wu, Aziz, and Haque, 2023), or otherwise neglected commuters’ driving and charging habits (Ferguson 81	
et al., 2018).  As noted in a recent review of infrastructure planning (Patil, Kazemzadeh, and Bansal, 82	
2022), supply-side studies still tend to make simplistic assumptions about driver charging behavior.   83	
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Moreover, studies of human behavior and EV charging have focused primarily on home (Bailey 84	
et al., 2023) and public charging (Rempel et al., 2022) where policy support has been stronger; 85	
comparatively less is known about systematic charging behaviors in the workplace and therefore about 86	
strategies for optimally designing workplace networks.1  87	

In this context, we propose a modeling framework for the optimal design of workplace EV 88	
networks (Section 3) that advances the literature in two key ways.  First, while networks could be 89	
designed by prioritizing any number of criteria, we prioritize human behavior that existing models have 90	
neglected and create data collection systems to obtain a broad cross-section of behaviors, habits, and 91	
preferences of real drivers (Section 4).  We collect these data through surveys of a new EV club 92	
(N=800) at UCSD that we created to support this research.2  The data characterize, for example, how far 93	
and frequently people commute to the workplace, how far they drive between charging sessions, 94	
whether they have access to home charging, and the type of EV they drive, among many other attributes.  95	

Second, because these new data empirically resolve human behavioral parameters for driving 96	
and charging, they allow for building models that improve the representation of drivers’ charging needs.  97	
We integrate these behavioral data into a new EV network planning framework built explicitly on 98	
behavioral parameters that implicate network design.  Embedding real human behavior into network 99	
planning models can significantly improve model outputs for network usage and design (as we will 100	
show); moreover, it enables analysis of how driver behaviors affect network planning, and how planned 101	
charger investments and parking rules affect drivers’ use of the network.  102	

We demonstrate the model using UCSD’s EV club (N=800) and charging network (Section 5) to 103	
two ends.  First, we investigate the significance of obtaining and using individual driver data where 104	
previous models have used idealized or average data.  We find that use of local driver data has a 105	
profound effect—affecting model outcomes for network usage fivefold.  Second, we analyze previously 106	
unstudied effects of human behavioral parameters, which models have struggled to integrate, relative to 107	
technological variables that are standard in network design models, like charger throughput.  We find 108	
that behavioral parameters dominate.  In addition, we quantify network usage (how drivers use the 109	
network to meet their charging needs) and the levels of stall electrification required to supply these 110	
usage patterns.  111	
 112	
2. Parking stall electrification 113	
 114	

We consider the decision problem of an institution (businesses, universities, other public 115	
institutions) with regular commuters, parking facilities, and a commitment to support the charging needs 116	
of its EV-driving constituents.  The goal is to build (or expand) a network of EV chargers that meets 117	
drivers’ charging needs while minimizing investment and maintenance costs.  We refer to this as the 118	
problem of parking stall electrification: a selection problem that requires choosing a portfolio of 119	

 
1 We observe that seemingly similar institutions are pursuing markedly different strategies for providing charging 
services:  the University of California Los Angeles has installed 406 Level-1 charging ports (96% of the network total; 
UCLA Transportation, 2024), whereas the University of California San Diego has installed 439 Level-2 ports (97% of 
the network total; UCSD Transportation Services, 2024b). 
2 Setting up data collection systems through an institution-wide EV club has been relatively inexpensive but required 
deep engagement with the university’s transportation and facilities offices that oversee EV chargers and parking.  To 
encourage drivers to sign up and share (anonymized) data, we implemented financial rewards including discounts on 
charging as well as raffles for membership and responding to surveys.  Institutions that charge for parking could 
similarly offer discounts; where parking is free, institutions could use gift cards, lotteries, or games (e.g., competition 
across departments) to incent employee participation. 
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chargers from a set of candidate portfolios.  While this applies to charging networks generally (installed 120	
anywhere in society), we focus on the workplace because evidence suggests it will repeat at innumerable 121	
institutions motivated to support drivers for reasons of environmental stewardship, reputation, or 122	
competitiveness (i.e., to attract top employee talent), among others.  123	

In its simplest form at a workplace, the stall electrification problem asks: for an institution, what 124	
number and type of EV chargers should be installed to meet drivers’ charging needs?  The challenge is 125	
that the ecosystem of chargers and capabilities is diverse and advancing constantly, while drivers too are 126	
diverse and have unique needs (as we elaborate in Sections 3-4).  Underinvesting in chargers could 127	
lead to frustration among drivers who find it difficult to reliably find an open charger, which in turn 128	
could undercut the workplace charging business model (and the EV transition generally).  Overinvesting 129	
can be expensive, potentially wasteful, and lead to stranded assets as old chargers are eclipsed by new 130	
needs and capabilities.  131	

More complex forms of the stall electrification problem could consider other institutional 132	
choices, such as parking rules, differential pricing to incentivize certain behaviors, and options for 133	
building EV-ready stubouts instead of chargers; or the potential for time-varying investments given 134	
exogenous factors that similarly change over time, like EV adoption rates, technological performance, 135	
and markets.   136	
 137	

 
Fig. 1.  Schematic of the workplace parking stall electrification problem.  A subset of an institution’s 
constituents commute to the workplace in an EV and, with each commute, may park in either an EV or 
non-EV parking stall alongside internal combustion engine (ICE) vehicles.  The goal of the stall 
electrification problem is to determine the optimal (cost-minimizing) number and type of chargers to 
install that meet the charging needs of the institution’s constituents.  While the number of parking stalls 
at the institution is fixed {1,...,S}, the institution seeks to determine the number of chargers to install 
within the set of parking stalls to support their {1,...,N} EV-driving constituents.  

 138	
3. Problem formulation 139	
 140	
 Herein, subscript i indexes N EV drivers (commuters) at an institution, i.e. 𝑖 ∈ {1, … , 𝑁}.  Each 141	
commuter drives a unique EV, so i similarly indexes EVs.  EVs are either a battery EV (BEV) or plug-in 142	
hybrid EV (PHEV).  Subscript c indexes the types of chargers that an institution could invest in (e.g., 143	
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level-1, level-2, and DC fast chargers) as well as the parking rules (e.g., allowable session dwell time) 144	
they might enforce.   145	

To optimally design a workplace EV network that meets drivers’ charging needs, institutions 146	
must first know four things: its policy goals for supporting drivers; the driving and charging behaviors of 147	
its EV-driving constituents; constituents’ EVs; and, if applicable, the institution’s existing portfolio of 148	
chargers and parking rules (Fig. 2).  What emerges from these is a unique picture of each driver’s 149	
interaction with the workplace network: how frequently they “plug in” to the network (relative to total 150	
commutes) and the number of weekly sessions they initiate.  In our modeling approach, the workplace 151	
network must be sized to fulfill these needs.   152	
 153	

 
Fig. 2.  Model structure: input data, outputs, and EV network performance measures.  Our approach to the stall 
electrification problem is rooted in real driver behavior collected through charging session records and surveys 
that solicit information about drivers’ EVs, demographics, habits, and preferences for driving, charging, and 
commuting in their EV. 

 154	
Table 1   155	
Nomenclature.  SOC–state-of-charge; BEV–battery electric vehicle; PHEV–plug-in hybrid electric vehicle; occ–156	
occurrences; LCC–lifecycle cost.  157	

Parameter / 
Variable 

Description Units 

Indices and sets 
𝑖 ∈ 𝒟 EV drivers at the institution; EVs – 
𝑐 ∈ 𝒞 EV charger types installed and available to invest in; charger dwell time limit – 
EV drivers 
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N Number of regular EV commuters at the institution – 
di Commute distance (residence-to-workplace roundtrip) of driver i mi 
fi Commute frequency of driver i occ/week 
Mi

total Annual total driving (commuting plus non-commuting) by driver i mi 
Mi

commute Annual commuting mileage by driver i mi 
Mi

other Annual other (non-commute) mileage by driver i mi 
Cihome Fraction of charging done at residence (i.e., home charging) by driver i – 
Ciwork Fraction of charging done at the workplace by driver i – 
Ti Mean duration of workplace charging sessions by driver i h 
SOC! Mean battery SOC minimum (“floor”) maintained by driver i (i.e., by which they 

plug in to charge) 
– 

EVs 
Vi EV type (BEV or PHEV) – 
Bi Nominal battery size kWh 
Ri Nominal electric range mi  
𝜖i Fraction of miles driven on electricity (for PHEVs) – 
Bieff	 Effective battery size (respecting the driver’s SOC floor) kWh 
Rieff	 Effective electric range (respecting the driver’s SOC floor)  mi  
Institutional policy for supporting constituents’ charging needs 
Mi

+ The subset of driving mileage to supply workplace charging for  mi 
EV chargers and parking stalls 
S Number of parking stalls at the institution – 
K Number of charger types installed and available to invest in – 
nCD Number of “charging days” per week at the institution ()  
Uc Number of existing EV chargers type c at the institution – 
Pc Power delivery (“throughput”) for EV charger type c kW 

𝐸! Maximum energy that charger type c can deliver during a charging session of 𝜏" 
duration 

kWh 

𝛥" Number of charging sessions per workday that charger type c can provide – 
Decision variables 
𝜐" 	 Number of chargers of type c – 
𝜏" Permissible session dwell time for EV charger type c  h 
Driver and workplace network measures 
𝐸",!$%$$&'( Energy delivered to EV i during a charging session at charger type c kWh 

𝑅",!$%$$&'( Electric range added to EV i during a charging session at charger type c mi 

𝜋",! Plug-in rate of driver i (i.e., fraction of workplace commutes that end at an EV 
charger) when using charger type c 

– 

𝜎!,"$%%&$' Annual charging sessions required by driver i when using charger type c occ/yr 

𝜎!,"
())*'+  Weekly charging sessions required by driver i when using charger type c occ/week 

𝜎(%)*'+, Network hosting capacity for weekly charging sessions – 

𝐸(%)*'+, Network hosting capacity for weekly energy delivered kWh 
LCC Lifecycle cost of the EV charging network USD$ 

 158	
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3.1 Institutional support for EV drivers 159	
 160	

The optimal design of a workplace charging network depends on an institution’s policy for 161	
supporting its EV-driving constituents.  While institutions could support drivers in numerous ways, we 162	
study two strategies that plausibly bookend levels of support they might provide.  In one strategy, an 163	
institution invests in chargers to meet some or all of affiliates’ driving mileage needs, e.g. total driving 164	
Mtotal or commuting Mcommute.  A second strategy meets some or all of affiliates’ charging needs, e.g. 165	
100% of charging or the portion of charging not already done at home 1–Chome.   166	

These support strategies recognize (and plan for) the fact that drivers have different habits, 167	
needs, and opportunities (e.g., some have access to home charging while others, such as renters, rely on 168	
charging outside the home) (CPUC, 2022).  Moreover, they implicate ideals of fairness and access, since 169	
newer EV adopters tend to have less access to home charging than early adopters and hence depend 170	
more on charging outside the home (Pierce and Slowik, 2023; Chakraborty et al., 2019).  171	

In all cases, institutional support manifests in the model as a requirement to supply some mileage 172	
driven by constituents, denoted 𝑀-.  As we show in Section 5, institutional choices for supporting 173	
drivers can significantly affect drivers’ network usage and can determine model outcomes.  174	
 175	
3.2 Driver behavior and charging needs 176	
 177	
 Drivers’ charging needs are a function of their driving and charging behaviors, such as the 178	
amount of driving and commuting they do, how often and deeply they charge, the EV they drive, and 179	
whether they have access to home charging.  These affect, for example, the energy needed for 180	
commuting and the effective size of a driver’s battery.  Charging needs also depend on institutional 181	
choices such as the type of chargers installed at the workplace and parking rules that govern their use.   182	
 183	
3.2.1 Driving and commuting 184	
 185	

Driving behaviors include home-to-workplace roundtrip commute distance d (mi), commute 186	
frequency f (per week), and annual mileage for total driving Mtotal (mi), commuting Mcommute, and other 187	
driving (non-commuting) Mother.  To protect personal information (including address), di is estimated as 188	
the driving distance between the institution and the centroid of the driver’s home zip code.  At UCSD, 189	
drivers report fi and home zip code in the EV club enrollment survey.  Mitotal could be obtained in several 190	
ways; we have EV drivers report vehicle odometer readings through recurring surveys (Section 4.3).  A 191	
driver’s unique annual commuting profile is therefore given by 192	
 193	

Micommute = 52𝑓"𝑑" 		, 𝑖 = 1,… ,𝑁 ,	 (1) 
 194	
and Miother = Mitotal – Micommute. 195	
 196	
3.2.2 Charging 197	
 198	

Charging habits include the fraction of charging done at home Chome and the workplace Cwork, 199	
measured on an energy (kWh) basis; the duration T of workplace charging sessions that drivers initiate 200	
when unrestricted by policy; and the typical SOC by which they plug in to charge, SOC.  𝐶(⋅) are self-201	
reported in the enrollment survey.  T and SOC are revealed through charging session data.  202	
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 203	
3.2.3 EVs 204	
 205	

EVs are characterized by their type (BEV or PHEV), battery size B (kWh), electric range R (mi), 206	
and fraction of total driving using electricity ε (for PHEVs).  EV type matters because BEVs and PHEVs 207	
can have markedly different charging patterns: relative to BEVs, PHEVs could be high-frequency 208	
chargers (Venegas, Petit, & Perez, 2021) because they have smaller batteries and electric ranges 209	
commensurate to commute distances; or they could be low-frequency chargers if they drive 210	
predominantly on gasoline.  211	

Drivers report their EV (year, make, model, and type) in the club enrollment survey.  B and R are 212	
then obtained from manufacturers through DOE (Department of Energy, 2024).  ε depends on driver 213	
behavior, but we cannot measure it directly.  Instead, we consider it as a function of vehicle range R, 214	
following the empirical relationship defined in Isenstadt et al. (2022) and given by 215	
 216	

𝜖" =

⎩
⎨

⎧
1 , if	BEV

	1 − expE–GH
𝑅"
NDK

1

𝑐1

23

142

M , if	PHEV 	,				𝑖 = 1,… ,𝑁 (2) 

 217	
where ND = 700 mi is normalized distance (and reflects proposed updates to codified EPA analysis) and 218	
c = [13.1, –18.7, 5.22, 8.15, 3.53, –1.34, –4.01, –3.9, –1.15, 3.88] is a weighting coefficient.  Given the 219	
variation in R among EVs, mean values are 0.2–0.7.  For BEVs, ε = 1.   220	

An EV’s effective battery size Beff, given in Eq. (3), is the portion of the battery that the driver 221	
regularly uses, respecting that they typically plug in with ample remaining SOC.  An EV’s effective 222	
range Reff, given in Eq. (4), is the distance it typically travels between plug-ins, similarly respecting how 223	
human behavior affects SOC and ε.  Since SOC ∈ [0,1], BEVs have Beff ≤ B and Reff ≤ R.  For PHEVs, 224	
we set SOC = 0 and instead capture variation in Reff through variation in 𝜖; with 𝜖 typically 0.2–0.7 for 225	
PHEVs, Reff > R.  226	
 227	

𝐵"%55 = 𝐵" 	T1 − SOC"U	,				𝑖 = 1,… ,𝑁 (3) 

𝑅"%55 = 𝑅" 	T1 − SOC"U	𝜖"–2	,				𝑖 = 1,… ,𝑁 (4) 

 228	
3.2.4 EV chargers and parking rules 229	

 230	
Chargers are defined by their power delivery or “throughput” P (kW), while parking rules cap 231	

the session dwell time τ (h) over which drivers can charge.  EV chargers can therefore deliver maximum 232	
session energy (kWh) given by  233	
 234	

𝐸! = 𝑃!𝜏! 	,				𝑐 = 1,… , 𝐾 (5) 

 235	
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Chargers and parking rules affect network design because they determine 𝐸 and in turn the range that 236	
drivers could recoup per session.   237	
 238	
3.2.5 Use of workplace charging 239	
 240	

Notwithstanding permissible dwell time 𝜏!, driver behavior reveals the typical duration Ti for 241	
which they actually charge, which may be larger or smaller than 𝜏!.  When unrestricted by dwell time 242	
limits, drivers receive session energy given by 243	
 244	

𝐸",!∗ = 𝑃!𝑇" 	,				𝑖 = 1,… ,𝑁	, 𝑐 = 1,… , 𝐾 (6) 

 245	
Ultimately, when plugging into a charger of type c, driver i recoups energy equivalent to 𝐸",!$%$$&'(, given 246	

in Eq. (7).  The energy delivered 𝐸",!$%$$&'( could be as large as 𝐸! but is usually smaller and constrained 247	
by the driver’s behavior—either their typical session duration Ti (which affects 𝐸",!∗ ) or the SOC with 248	

which they typically plug in, SOC" (which affects 𝐵"%55).  Delivered energy 𝐸",!$%$$&'( begets an increase in 249	

range 𝑅",!$%$$&'(, given in Eq. (8), that is proportional to the fraction of battery replenished 𝐸",!$%$$&'(/𝐵"%55.   250	

 251	

𝐸",!$%$$&'(  =  min^𝐸! , 𝐸",!∗ , 𝐵"%55_ 	,				𝑖 = 1,… ,𝑁	, 𝑐 = 1,… , 𝐾 (7) 

𝑅",!$%$$&'( =
𝐸",!$%$$&'(

𝐵"%55
R&%55	,				𝑖 = 1,… ,𝑁	, 𝑐 = 1,… , 𝐾 (8) 

 252	
To recoup energy equivalent to 𝑀- annual driving miles, driver i requires 𝜎",!8((98: annual 253	

charging sessions at charger c, given in Eq. (9).  σannual considers that PHEVs drive only a fraction 𝜖 of 254	
total miles on electricity, will drive farther than R before charging, and hence require fewer charging 255	
sessions than implied by R alone.  256	
 257	

𝜎",!8((98:  =  
𝑀-

𝑅",!$%$$&'(
𝜖" 	,				𝑖 = 1,… ,𝑁	, 𝑐 = 1,… , 𝐾 (9) 

 258	

The number of implied weekly sessions is given by 2
;<
𝜎",!8((98:.  However, this is constrained by the 259	

driver’s commute frequency fi: in our model, drivers do not make additional commutes just to charge; if 260	

the number of required weekly charging sessions exceeds commutes (i.e., if 2
;<
𝜎",!8((98: > 𝑓"), we assume 261	

drivers charge outside the workplace and initiate only fi weekly workplace sessions.  262	
It follows that the driver’s plug-in rate 𝜋",!, or fraction of workplace commutes that end at an EV 263	

charger, is given by Eq. (10); and the number of actual weekly charging sessions that driver i initiates, 264	

𝜎",!
*%%,:=, is given by Eq. (11).  265	

 266	
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𝜋",!   =  min b
1
52𝜎",!

8((98:

𝑓"
, 1c  	,				𝑖 = 1,… ,𝑁	, 𝑐 = 1,… , 𝐾 (10) 

𝜎",!
*%%,:=  =  𝜋",! 	𝑓" 	,				𝑖 = 1,… ,𝑁	, 𝑐 = 1,… , 𝐾 (11) 

 267	

Notationally, 𝜎",!
(⋅) gives the number of sessions required by driver i when plugging in at charger 268	

type c.  We note that the number of weekly sessions drivers initiate is a function of the portfolio of 269	
chargers {𝜐! , 𝜏!}	∀𝑐 ∈ {1, … , 𝐾} that the institution chooses to install.  270	
 271	
3.3 Algorithm for selecting EV chargers 272	
 273	
 The goal of workplace EV network planning (Section 2) is to invest in a cost-minimizing 274	
portfolio of EV chargers that meets the charging needs of drivers.  To determine optimal investment of 275	
chargers, we formulate a constrained optimization problem: 276	
 277	

minimize
>",		@"

		LCC , (12) 

 278	
such that 𝜐! , 𝜏! ∈ ℤ (are integers), 𝜐! , 𝜏! ≥ 0, ∑ 𝜐!! ≤ 𝑆, and 𝜏! ≤ 24		∀𝑐 ∈ {1, … , 𝐾}, where LCC is the 279	
lifecycle cost of the EV network (inclusive of upfront and operating costs), 𝜐! is the number of chargers 280	
of type c, 𝜏! is the allowable session dwell time at charger type c, and S is the total number of parking 281	
stalls at the institution that can host chargers.   282	

In general, the constraint to meet drivers’ charging needs is nonlinear: the institution seeks to 283	

install 𝜐! chargers with dwell time 𝜏!, yet drivers’ charging needs, given by 𝜎",!
(⋅) and 𝜋",! in Eq. (9)–(11), 284	

are a function of the institution’s decisions for 𝜐! and 𝜏!.   285	
 We therefore propose a heuristic algorithm to solve the optimization problem in Eq. (12) using 286	
particle swarm optimization (PSO) (Poli, Kennedy, & Blackwell, 2007), a commonly used heuristic 287	
method that requires few assumptions about problem continuity and differentiability (Eberhart and Shi, 288	
2001).  With PSO, npart particles search an ndim-dimension solution space, solve the problem in Eq. (12) 289	
for a location in the space (a candidate solution), and store and share the solution value, or “fitness.”  290	
Each dimension corresponds to a single decision variable.  Particles interact and exploit areas around 291	
better solutions.   292	

Following prior work, we adapt the PSO routine specified in Hanna et al. (2019) (and direct the 293	
reader there for details), with two main updates.  One, dimensions in the solution space correspond to 𝜐! 294	
and 𝜏! and are constrained by S and 24 h, respectively; hence candidate solutions are portfolios of 295	
chargers and their permissible dwell time.  Two, solution fitness is defined as LCC.   296	
 297	
3.4 Heuristic for determining whether charging needs are met 298	
 299	
 The algorithm in Section 3.3 generates a portfolio of chargers—a candidate EV network—given 300	
by {𝜐! , 𝜏!}	∀𝑐 ∈ {1, … , 𝐾}.  To determine whether a candidate network meets drivers’ charging needs, 301	
we need criteria that appraise supply and demand for charging.  While many criteria are possible, we use 302	
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weekly charging sessions and energy because they are the most granular discrete measures that our data 303	
collection systems generate.  A network can support a weekly maximum number of sessions 𝜎(%)*'+, 304	
and can deliver energy Enetwork, given by  305	
 306	

𝜎(%)*'+, = 𝑛ABG𝜐!𝛥!
!

 (13) 

𝐸(%)*'+, = 𝑛ABG𝜐!𝛥!𝑃!𝜏!
!

 (14) 

 307	
where nCD is the number of “charging days” per week (i.e., number of weekly workdays over which 308	
drivers can reasonably be assumed to commute and charge) and 𝛥! is the number of daily sessions that 309	
charger type c can host and a function of human behavior in response to 𝜏!.  Based on our observations 310	
of UCSD drivers, we define nCD = 5 and 𝛥! as 311	
 312	

𝛥! = p
3	, 𝜏! ≤ 2

								2	, 2 < 𝜏! ≤ 4
1	, 𝜏! > 4

 (15) 

 313	
While the upper potential for supplying sessions and energy is a deterministic feature of the 314	

network (and therefore known), we cannot know which drivers i = 1,…,N will charge at which of the 315	
potentially many types of chargers c = 1,…,K.  Drivers could self-allocate efficiently (e.g., wherein 316	
high-need drivers use high-kW-throughput chargers) or inefficiently. We therefore propose an allocation 317	
algorithm (Algorithm 1) that randomly assigns drivers to chargers (lines 4–7), calculates the number of 318	
sessions and energy the network delivers per that allocation (lines 8–9), and determines whether drivers’ 319	
aggregate need for sessions and energy are met by the network (lines 12–14).   320	

The process of random allocation in Algorithm 1 can be embedded within a Monte Carlo routine 321	
and repeated until driver assignments to chargers {𝒜𝑐}, supply of sessions X, and supply of energy Y 322	
converge.  The network is deemed to meet drivers’ charging needs (i.e., Z = true) when the probability 323	
of meeting demand from a random allocation of drivers and chargers exceeds some threshold, say 0.95 324	
(95th percentile), meaning we would expect network supply to meet demand during 49.4 weeks of the 325	
year.   326	

We note that Algorithm 1 omits human behavior and could be improved in future work by 327	
integrating observations of human responses.  For example, driver behaviors may tend toward efficient 328	
network outcomes, e.g. if drivers seek opportunities to charge when network utilization is low, thereby 329	
distributing demand and increasing usage.  Alternatively, drivers may flout rules on session dwell time, 330	
thereby decreasing network supply.  This motivates the need to investigate the potential flexibilities in 331	
human behavior that can, all else equal, reduce investments in charging infrastructure without sacrificing 332	
service quality. 333	
 334	
Algorithm 1.  Determines the number of weekly sessions X and energy Y delivered by a workplace EV 335	
charging network, and whether that meets aggregate driver demand for sessions and energy, denoted Z. a 336	

	 Input:	N,	𝜎!,"
())*'+,	𝐸!,"-)--./%,	𝜎%)0(/1*,	𝐸%)0(/1*.		Output:	X,	Y,	Z	

1	 Set	initial	conditionsb:	𝑋2 = 𝑌2 = 103		∀𝑗 ∈ {1,… ,𝑁},	Z	=	false	
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2	 Unassigned	drivers	𝒰 = {1,… ,𝑁}	
3	 for	charger	type	𝑐 ∈ {1,… , 𝐾}		𝐝𝐨	
4	 	 Randomly	assign	𝜎"%)0(/1*	drivers	𝒜" ∈4 𝒰	
5	 	 if	𝜎"%)0(/1* > |𝒰|	then	
6	 	 	 𝒜" = 𝒰	
7	 	 end	if	
8	 	 Supply	sessions	𝑋2 = 𝜎2,"

())*'+		∀𝑗 ∈ 𝒜" 	
9	 	 Supply	energy	𝑌2 = 𝐸2,"-)--./%		∀𝑗 ∈ 𝒜" 	
10	 	 Set	unassigned	drivers	𝒰 = 𝒰\𝒜" 	
11	 end	for	
12	 if	∑ 𝑋22 ≤ 𝜎%)0(/1*	and	∑ 𝑋2𝑌22 ≤ 𝐸%)0(/1*	then	
13	 	 Z	=	true	
14	 end	if	

a ∈# denotes random allocation; |⋅| denotes set cardinality (number of set elements).  337	
b Elements in X and Y are set to arbitrarily high numbers and overwritten (lines 8–9) only when the network is sufficiently 338	
sized to meet demand.  Insufficiently-sized networks thus fail the conditions in line 12.  339	
 340	
3.5 Stall electrification 341	
 342	

 The stall electrification rate is given by 2
C
∑ 𝜐!! ∈ [0,1].  This is the fraction of parking stalls at 343	

the institution that must be “electrified,” i.e. converted to an EV charging stall, to meet the aggregate 344	
charging needs of the institution’s EV drivers.   345	
 346	
3.6 EV network performance metrics  347	
 348	
 We define three categories of metrics to quantify network performance, or how efficiently 349	
drivers use the workplace network:  350	
 351	

• Network hosting capacity is the quantity of charging activity the network could accommodate, 352	
assuming perfectly efficient use of the network.  The upper potentials for sessions and energy 353	
delivery are given by σnetwork and Enetwork, respectively. 354	

• Network usage is a measure of drivers’ actual use of the network.  We define network usage via 355	
the number of weekly sessions initiated and energy delivered. 356	

• Network efficiency is the ratio of actual usage to hosting capacity.   357	
 358	
4. Driver behavioral data 359	
 360	

In this section, we elaborate the three data collection systems we implemented at UCSD to 361	
generate human behavioral data: records of campus charging sessions (obtained from the EV charger 362	
vendors operating on campus); an intake survey that drivers complete upon joining UCSD’s EV club; 363	
and recurring odometer surveys sent about monthly to club members (Table 2).  These data, which 364	
provide a unique profile of how each driver interacts with the workplace network, enable new planning 365	
models based explicitly on human behavior.   366	
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 Institutions without the ability to set up data collection systems can configure the model in 367	
Section 3 using stylized averages for human behavior parameters; however, use of behavioral inputs that 368	
reflect the local driver population can vastly improve data quality and model outputs (as we show in 369	
Section 5.3).  370	
 371	
Table 2   372	
Data collection systems we have implemented at UCSD to generate human behavioral data, and the model 373	
parameters it defines.  For completeness, we include key external data sources as well. 374	

Data collection system Driver attribute Units 

Club enrollment survey 
Commute distance (roundtrip) mi commute–1 
Commute frequency week–1 
Commuting mileage mi year–1 

EV reported in club enrollment survey; EV 
specs obtained from DOE (2024) 

EV type BEV or PHEV 
EV battery size kWh 
EV battery range mi 

Club enrollment survey; updated per 
recurring odometer surveys and campus 
charging sessions 

Fraction of total charging done at home – 
Fraction of total charging done at the 
workplace – 

Recurring odometer surveys Total driving mileage mi year–1 

Campus charging sessions 
Typical charging session duration h 
Typical battery SOC when initiating a 
charging session – 

Isenstadt et al. (2022) Fraction of driving on electricity (for PHEVs) – 
 375	
4.1 Workplace charging sessions 376	
 377	

UCSD contracts with EVSE vendors who install and manage EV chargers throughout campus.  378	
From these vendors we receive charging session-level data on every instance of an EV connecting to the 379	
campus network, including the time an EV plugs in, stops charging, and unplugs from each charger, 380	
along with the energy delivered and driver who initiated the session (through an anonymized ID 381	
number).  Drivers who opt to enroll in the UCSD EV club consent to our matching their information to 382	
these IDs, allowing analysis of their sessions.  In this work, we draw on 3,218 distinct charging sessions 383	
at 113 charging ports since June 2023.3  384	

Local charging session data is important because it defines two key human behavioral 385	
parameters.  First is the duration for which drivers plug in when unconstrained by limits on session 386	
dwell time, T.  While workplaces might assume 8–9 h of plug-in time (reflecting a 9–5 pm schedule), we 387	
observe wide variation among UCSD drivers and a mean of 7.3 h (Fig. 3a).4   388	

The second parameter is the typical SOC to which drivers let their batteries fall before plugging 389	
in, SOC.  While automakers and analysts recommend 20% of capacity as a floor (Kostopoulos 390	
Spyropoulos, & Kaldellis, 2020), we observe that UCSD’s BEV drivers typically use only 36% of their 391	

 
3 In total, our level-2 session data span 66,000 distinct sessions over 7 years at 386 charging ports.  The majority of 
these have been generated since May 2023 from new drivers and chargers.  
4 At UCSD, drivers can park at level-2 chargers for up to 4 or 12 h (depending on the type of charger) and at DC fast 
chargers for up to 1 h.  The campus is moving toward 12-h dwell-time stations.  
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battery; i.e., they recharge when SOC	= 0.64, on average.  For PHEV drivers, the numbers are 73% and 392	
SOC = 0.27 (Fig. 3b).  Planners who assume drivers plug in only upon reaching a low SOC may 393	
significantly underestimate the number of sessions that will be initiated on a workplace EV network.  394	
Such assumptions may also overestimate energy delivered per session, and hence overvalue higher-395	
throughput chargers. 396	
 397	

 
Fig. 3.  Key human behavior model inputs collected from charging session records of UCSD’s EV club.  a, 
Session duration is the duration drivers leave their EV plugged in and indicates the length of time drivers 
occupy the stall when unrestricted by parking rules.  b, Depth of recharge is the energy delivered to the EV as a 
percentage of the battery capacity and indicates the SOC drivers let their battery fall to before recharging.  BEV 
and PHEV drivers charge in markedly different ways: although PHEV sessions last about as long as those of 
BEVs (lasting only 0.5 h shorter, on average), they recharge their smaller batteries quickly, spending only half 
as much time actively charging, and hence “block” (i.e., occupy without charging) parking stalls for about two 
hours longer, on average, than BEVs.  

 398	
4.2 Enrollment survey: Charging and commuting habits 399	
 400	

Upon joining the UCSD EV club, drivers complete an intake survey about their EV,  charging 401	
habits, driving behaviors, and demographics.      402	

EV information includes EV make, model, and year, which we cross-reference with 403	
manufacturer databases (Department of Energy, 2024) to obtain specifications such as battery size and 404	
range.  The type of EV that drivers use shapes their interactions with the workplace network, including 405	
how much energy they require and how many sessions they initiate to procure it.  There are large 406	
differences, for example, between BEVs and PHEVs (Fig. 3b)—due to large differences in battery size 407	
(Fig. 4a; 77 vs. 12 kWh mean among UCSD EV club members).  At UCSD, we observe that PHEV 408	
drivers tend to be either high-frequency chargers (charging with nearly every commute) or low-409	
frequency chargers (instead driving regularly on gas).  The type of EVs drivers use significantly affects 410	
workplace network design. 411	

Commuting and charging information includes commute frequency f and home zip code, which 412	
together enable calculations of commute distance d and total annual commuting mileage Mcommute (Fig. 413	
4b); and the share of charging done at home Chome (Fig. 4c).  UCSD drivers self-report charging 41% at 414	
campus and 39% at home, on average (on an energy basis), while charging session data reveal 47% 415	
charging at campus (with the remaining 53% done off-campus).  These are much lower than U.S. 416	
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Department of Energy estimates, which put the national home charging average at 80% (Office of 417	
EERE, 2020).  A recent meta-analysis suggests the share of residential charging exceeds 90% (Yang, 418	
Fulton, and Kendall, 2024).  For institutions that support EV-driving constituents based on their driving 419	
and charging habits (as envisioned in Section 5.1), assuming higher levels of home charging than 420	
actually occur could significantly underestimate the needed size of a workplace charging network.  421	
 422	

 
Fig. 4.  Key human behavior model inputs collected from enrollment surveys and odometer surveys of UCSD’s 
EV club.  a, What people drive—EV battery size.  b, How far people drive—annual total and commuting 
mileage.  c, Where people charge—the self-reported fraction of charging done at home (we also obtain the 
fraction charged at the workplace).  Wide variation in behaviors and preferences underscore the importance of 
building EV network design models around personalized driver data: drivers have different EVs (a), may live 
proximate to or distant from the workplace (b), and tend to be either primarily home chargers (e.g., >75% home 
charging) or defined by utter lack of access to home charging (0%) (c)—all of which lead drivers to interact 
with the workplace network in unique ways.  

 423	
4.3 Odometer surveys: Total driving 424	
 425	

We ask UCSD’s EV club drivers monthly to report their odometer reading.  Multiple readings 426	
allow for calculations of total driving mileage Mtotal, which implicates the total charging that drivers 427	
need (Fig. 4b).5  We observe that EV club members average 35 mi/day, or 12,775 mi/year—similar to 428	
national and statewide estimates of 12,500–14,000 mi (Federal Highway Administration, 2019; Federal 429	
Highway Administration, 2022) but 48% higher than the citywide estimate of 8,650 mi (Comen, 2016).  430	
Plausible variation in estimates of driving mileage greatly affects network usage and design.  As we 431	
show in Section 5.2, assuming UCSD’s club members drive the smaller San Diego-derived distance of 432	
8,650 mi would decrease workplace charging sessions by 23%.  433	

Odometer surveys include a free-response field in which drivers enter their mileage, as well as a 434	
field for uploading a photo of the odometer, allowing us to verify readings.  We observe that 17% of 435	
readings that include a photo are reported with errors (e.g., due to excessive rounding, typos, or 436	
guessing).  For drivers who have not submitted verifiable odometer readings, we construct a profile of 437	
their annual mileage using the data of drivers who have submitted readings, as shown in Fig. 5.  438	
 439	

 
5 Odometer surveys are also useful as a conduit to ask additional questions of high value, e.g. about changes over time in EV 
ownership or home residence. 
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Fig. 5.  Total driving and commuting for the subset of UCSD’s EV club members (n=219) who have responded 
to sufficiently many (2+) odometer surveys to estimate their total driving.  For the subset of drivers without 2+ 
readings, we estimate total driving from their self-reported commuting mileage, which is known, and the total 
driving–commuting relationship shown in the figure.  Total driving mileage increases linearly with commuting 
mileage, given by Mi

total = 0.69 Mi
commute + 9100.  

 440	
5. Case study and results 441	
 442	

In this section we animate the model using UCSD’s EV network and 800 drivers enrolled in the 443	
UCSD EV club.  UCSD is a large institution with 75,000 affiliates (students, staff, faculty), 444	
approximately 20,000 parking spaces, and an EV network of 439 level-2 (6.25 kW) charging ports 445	
(UCSD Transportation Services, 2024a; Bayram et al., 2016).6  446	

Our model for network design in Section 3 requires that institutions first know how they will 447	
support drivers.  In what follows, we analyze four plausible levels of support (Section 5.1), then perform 448	
general sensitivity analysis on model parameters (Section 5.2), and follow this with deeper analysis on 449	
what we find to be the most determinant model inputs: configuring parameters with local behavioral 450	
driver data instead of regional average data (Section 5.3), the effective battery range that drivers actually 451	
use (Section 5.4), the synergy between EV charger capability and permissible dwell time (Section 5.5), 452	
and potential behavioral rebound effects in which drivers bring some fraction home charging to the 453	
workplace (Section 5.6).   454	
 455	
5.1 Institutional strategies for supporting drivers 456	
 457	

While institutions could supply charging needs in numerous ways, we investigate two systems of 458	
support that generate plausible bookends on driving mileage (and hence volume of charging) that might 459	
be supported: one based on affiliates’ driving (e.g., total driving or commuting only), and another based 460	
on charging needs (e.g., all charging or only the portion of charging not already done at home).  461	
Numerically, support manifests as the total electric range Mi+, in miles, that the workplace EV network 462	

 
6 UCSD’s network is currently undergoing expansion: an additional 762 level-2 ports are anticipated by year-end 2025.  
The campus also hosts 13 DC fast chargers, with 22 more planned.  About 3,000 unique drivers have used the network 
multiple (>1) times.  
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should be capable of delivering to drivers.  We analyze all four combinations of these goals, with Mi+ set 463	
to Mitotal, Mitotal (1–Cihome), Micommute, and Micommute (1–Cihome) (Table 3).   464	
 465	
Table 3   466	
Four strategies (goals) for supporting EV drivers with workplace charging.   467	

Case Institutional support for… Range (mileage) to 
supply Mi

+ Logic behind support 

 Driving  Charging   

1 Total driving All charging Mitotal Upper bound of institutional support 

2 Total driving Charging not 
met at home Mitotal (1–Cihome) 

Develop workplace charging around the 
home chargers that affiliates have already 
invested in and use 

3 Commuting 
only All charging Micommute 

An ethos that workplace networks support 
commuting, while other networks 
(destination, highway) support other driving 

4 Commuting 
only 

Charging not 
met at home Micommute (1–Cihome) Combination of case 2 and 3 

 468	
Fig. 6 shows drivers’ use of the workplace charging network under the four scenarios in Table 3.  469	

Numerical results are reported in Table 4.   470	
Three important observations emerge from Fig. 6.  First, network usage varies widely across 471	

scenarios, from 0.6 to 2.3 sessions per week per driver (Fig. 6b), indicating that institutional choices 472	
about supporting EV drivers profoundly affect network usage and size.  For example, supporting all 473	
charging needs associated with commuting (scenario 3) would require a portfolio of EV chargers that 474	
supports 1 session per week per driver, on average; while a commitment to supporting all charging 475	
needs and all driving (scenario 1) would require a network that supports 2.3 sessions per week per 476	
driver.  Given that these policies implicate supporting many additional sessions, institutions should 477	
exercise caution when establishing goals and in choosing the criteria by which they support commuters.  478	
There is high value in iterative planning that begins with modest ambition, evaluates progress over time, 479	
and adjusts goals accordingly. 480	

Second, for UCSD, the decision of whether to support total driving or commuting only 481	
(scenarios 1–2 vs. 3–4) is more important than the decision of whether to support all charging or only 482	
non-home charging (scenarios 1, 3 vs. 2, 4).  Increasing support from commuting to total driving triples 483	
the mean plug-in rate, from 17% to 51%; while increasing support from non-home charging to all 484	
charging increases the mean plug-in rate 55%, from 51% to 79%.  485	

Third, BEVs and PHEVs have similar network usage when non-home charging is supported 486	
(scenarios 2, 4) because PHEV drivers report higher reliance on home charging, on average.  When all 487	
charging is supported (scenarios 1, 3), PHEV usage is higher because the smaller batteries in PHEVs 488	
require more frequent charging and cannot draw as much energy per session as those of BEVs. 489	

For the 800 UCSD club drivers, scenarios 1–4 envision supporting 0.6–2.3 weekly charging 490	
sessions per driver.  This would require 96–368 chargers with 6.25 kW throughput and 12-h maximum 491	
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dwell time (the current UCSD standard), assuming uniform distribution of sessions across the 5-day 492	
workweek.  With 20,000 parking spaces, that equates to a 0.5–1.8% stall electrification rate.  (We report 493	
these calculations only for illustration; UCSD’s 439 level-2 charging ports are sufficient to meet this 494	
demand but are used by other (non-EV club) drivers at UCSD and often highly congested.  Our focus 495	
herein is how human behavior affects drivers’ use of the network; in future work we plan deep analysis 496	
of network design.)  497	
 498	
Table 4   499	
Drivers’ use of the campus charging network: plug-in rate and anticipated number of charging sessions per week 500	
per driver.  Results are the mean by EV type. 501	

Case 1 2 3 4 
Support for driving Total driving Total driving Commuting only Commuting only 

Support for charging All charging Charging not 
met at home All charging Charging not 

met at home 
Plug-in rate (%)     
   All EVs 79% 51% 30% 17% 
   BEVs 76% 51% 28% 17% 
   PHEVs 87% 51% 35% 17% 
Sessions per week per 
driver     

   All EVs 2.3 1.5 1 0.6 
   BEVs 2.2 1.5 1 0.6 
   PHEVs 2.5 1.5 1.1 0.6 

 502	
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Fig. 6.  Drivers’ network usage for 4 scenarios of institutional support: support for total driving (scenarios 1–2) 
or only commuting driving (scenarios 3–4), alongside support for all drivers’ charging need (1, 3) or only 
charging not already done at home (2, 4).  a, Plug-in rate (i.e., the percentage of commutes to campus that must 
end in an EV stall for drivers to recoup mileage).  b, The number of charging sessions per week per driver.  
Markers denote the mean across 800 UCSD EV club members (621 BEVs, 179 PHEVs). 

 503	
5.2 Simple sensitivity analysis  504	
 505	

In this section we vary all seven of the significant parameters in the model within ranges 506	
specified in Table 5.  In each sensitivity analysis, we vary the single parameter noted while holding 507	
constant all other model parameters, using scenario 3 as a baseline.  In Sections 5.3–5.6 we investigate 508	
the most important parameters for charging network design and explore wider parametric variation to 509	
show deeper implications for decision-making.  510	

The seven sensitivities span two major clusters of factors that affect network planning: those that 511	
implicate human behavior, which institutions may have little control over; and decisions about network 512	
design, which institutions plausibly control.  Fig. 7 shows results for the simple sensitivity analysis: how 513	
drivers’ use of the network changes following variation in a single model parameter.  While results are 514	
nuanced, several trends emerge: 515	
 516	

• Among the two clusters of parameters, sensitivity is greater for institutional choices—especially 517	
the level of institutional support. 518	
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• After institutional goal-setting, SOC floor is the most important parameter for workplace 519	
network usage.  The SOC floor sensitivity is high because drivers typically plug in with high 520	
SOC (mean BEV: 64%) yet park for a duration (mean BEV: 7.5 h) that could yield significantly 521	
deeper sessions.  With deeper sessions, drivers need fewer sessions (and hence an overall smaller 522	
workplace network) to recoup the energy they need. 523	

• Sensitivities to dwell time policy are small in our baseline because 4–8.5 h dwell times, when 524	
combined with 6.25 kW chargers, are commensurate with the energy drivers need to recoup.  525	
This also explains the lack of any benefit from switching to higher 8.6 kW chargers.  Dwell time 526	
has a larger impact in cases where the institution’s chargers have lower throughput capability 527	
(e.g., level-1), as we show in Section 5.5.  528	

• Sensitivity to the fraction that PHEVs drive on electricity is small because they comprise a small 529	
share of the fleet (22%) and most must already plug in with each commute to campus for an 530	
assumed fraction of electric driving.  However, we observe that PHEV drivers tend to be either 531	
electricity-maximizing or gas-dependent drivers.  What could matter more (but remains beyond 532	
our data collection) is the ratio between these PHEV driver archetypes at the institution. 533	

 534	
Two takeaways emerge from these sensitivities.  First, institutions should be mindful about their 535	

ambition and the chargers they plan to install.  While higher-throughput chargers may allow for deeper 536	
sessions, they may not reduce usage (plug-in rates, the number of sessions) unless drivers also adapt 537	
their behavior (e.g., SOC floor).  Second, to that end, institutions should strive to know their 538	
constituents’ driving and charging patterns.  Two behaviors—SOC floor and total driving mileage—539	
greatly effect network usage.  Institutions cannot control drivers’ SOC floor (which relates to range 540	
anxiety), but may be able to shape it, e.g. through workplace charging incentives that encourage deeper 541	
(greater kWh) sessions.  Credible estimates for total driving span 8,650–14,000 mi, which imply 7–29% 542	
additional or fewer weekly charging sessions that a workplace network would be designed to support.  543	
Drivers’ driving and charging profiles can be understood through surveys and odometer readings like 544	
those we have created at UCSD.   545	
 546	
Table 5   547	
Parametric variation of 7 parameters in the simple sensitivity analysis.  Sensitivity analysis is done with respect to 548	
scenario 3 in Table 3. 549	

Parameter Baseline 
value 

Sensitivity value 
(low, high) Justification 

Institutional 
support 

Total driving, 
non-home 
charging 
(Scenario 2) 

Commuting; non-
home charging 
(Scenario 4) 

Institutional workplace network intended to support 
commuting needs unmet at home (see Section 5.1) 

Total driving, all 
charging 
(Scenario 1) 

Upper bound of institutional ambition for supporting 
drivers through workplace charging (see Section 5.1) 

EV charger kW 
throughput 6.25 kW 

2 kW Typical level-1 charger throughput 

8.6 kW Anticipated future modal level-2 charger at UCSD 

EV charger dwell 
time 7 h a 4 h Institutional policy focused on access (aimed at 

providing 2 sessions per workday per charger) 
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8.5 h 
Institutional policy focused on convenience (intended 
to allow drivers to park for the full workday, inclusive 
of a break) 

Battery SOC (for 
BEVs) b 64% 

44% SOC floor associated with the 85th percentile session 
depth (per UCSD driver session data; see Fig. 3b) 

83% SOC floor associated with the 15th percentile session 
depth (per UCSD driver session data; see Fig. 3b) 

Percentage of 
home charging 
brought to 
campus c 

0 

–25% 
Potential feedback in charging behavior in which 
drivers migrate some workplace charging outside the 
workplace, e.g. due to expensive rates 

25% 
Potential feedback in charging behavior in which 
drivers migrate some home charging to the workplace, 
e.g. due to competitive rates 

Average annual 
total driving 12,775 mi 

8,650 mi San Diego regional average (Comen, 2016) 

14,000 mi 
Upper bound estimate reflecting working-age U.S. 
population (Federal Highway Administration, 2019; 
Federal Highway Administration, 2022)  

Mean PHEV 
fraction of 
driving on 
electricity 

41% 
33% Mean value using 2022 industry updates to EPA’s 

methodology (Isenstadt et al., 2022) 

58% EPA’s codified methodology (Isenstadt et al., 2022) 
a Level-2 chargers at UCSD are installed in parking stalls with 4-h and 12-h dwell time limits.  The baseline value of 7 h 550	
reflects observed behavior of UCSD EV club drivers when unconstrained by dwell time limits.   551	
b For PHEVs, we set SOC = 0, as explained in Section 3.2.3. 552	
c The negative sensitivity value is applicable only to projects to expand an existing EV network.  553	
 554	
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Fig. 7.  Change in drivers’ network usage due to variation in select model parameters.  We report network 
usage as: a, plug-in rate; and b, charging sessions per week per driver.  Variation is noted next to each 
parameter and reported in Table 5.   

 555	
5.3 The value of local driver behavioral data  556	
 557	

Institutions may lack the resources to deploy the kinds of data collection systems (Section 4) that 558	
we implement and use in our approach to EV network design (Section 3).  Instead, institutions might 559	
turn to national or regional average data instead of calibrating the model with local driver data.   560	

Here, we quantify the differences in drivers’ workplace network usage derived from two types of 561	
data inputs: external estimates (e.g., national or regional averages that disregard the institution’s local 562	
drivers) and individual driver estimates derived from the institution’s affiliated EV drivers, as detailed in 563	
Table 6.  At UCSD, local driver data reveal a smaller fraction of home charging, greater total driving, 564	
shorter-duration sessions, and smaller (fewer kWh) sessions—all of which push model outcomes toward 565	
greater electrification.  566	

Fig. 8 shows results for the two model specifications.  We find that obtaining and parameterizing 567	
our model with locally collected data from UCSD’s real drivers has a massive effect on workplace 568	
charging activity.  With local data, plug-in rates and weekly sessions are threefold higher than those 569	
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derived from external estimates, underscoring the value of calibrating the model with local human 570	
behavioral data.  Using externally sourced estimates is likely better than guessing blindly, but in our 571	
case, it still significantly underestimates the need for workplace chargers.   572	
 573	
Table 6   574	
Model parameterizations for two model runs: one derived from “external estimates” (which know nothing of local 575	
driver data); and a second derived from individual data obtained from UCSD’s EV drivers. 576	

Parameter Parameter basis (source) 

 External estimates (e.g., 
national average)a 

Driver-derived estimates (from 
the institution’s EV drivers) 

Percentage of charging done at home 80% 38%b 

Total annual driving 11,000 mi 12,775 mic 
Permissible (or effective) charger 
dwell-time 8 h 7 hd 

SOC floor (for BEVs) 20% 64%d 
a External estimates are: 80% home charging (Office of EERE, 2020), 11,000 mi annual total driving (Steinbach and Tefft, 577	
2022), and 20% SOC floor per manufacturer guidance; an 8-h dwell time reflects a standard workday. 578	
b Calculated from driver responses to the UCSD EV club intake survey.  579	
c Calculated from driver responses to the UCSD EV club intake survey and odometer surveys. 580	
d Calculated from driver charging session records at UCSD.  Driver behavior reveals that sessions are typically shorter than 581	
the permissible dwell time implied by an 8-h workday.  582	
 583	

 
Fig. 8.  Workplace network usage—a, plug-in rate and b, charging sessions per week per driver—for two 
model specifications that use either (at top) stylized national or regional estimates (without reference to locally 
known data, which in our study is derived from UCSD EV drivers); or (at bottom) known behavioral data from 
the institution’s EV drivers (in our study, UCSD EV drivers) that has been used to generate unique individual 
profiles of network usage.   

 584	
5.4 EV driver behavior: a key uncertainty 585	
 586	
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As we showed in Section 5.2, floor SOC is the model parameter that most affects workplace 587	
network usage.  Here we investigate the full range of plausible behavior, from 0 to 0.9 (Fig. 9).  SOC = 0 588	
represents ideal driver behavior, in which drivers use the full available battery capacity before charging; 589	
at the other extreme, SOC = 0.9 indicates very conservative driving, in which drivers use only 10% of 590	
the available battery capacity before charging.  We hold the workplace network constant, with 6.25 kW 591	
chargers and 7-h dwell time, while varying SOC.  (The 7-h dwell time reflects the observed behavior of 592	
UCSD EV club drivers when unconstrained by dwell time limits; UCSD policy typically allows 12 h of 593	
dwell time.) 594	

We observe two patterns in how SOC affects network usage.  First, decreasing SOC from 0.9 to 595	
0.5 has a sharp effect on drivers’ network usage: plug-in rates decrease 38 percentage points (from 80% 596	
to 42%) and weekly sessions per driver fall from 2.7 to 1.2.  Second, decreasing SOC further, from 0.5 to 597	
0.1, yields additional but shallower declines in plug-in rate of 15 percentage points (from 42% to 27%), 598	
and in weekly sessions, from 1.2 to 0.7.  Network operators can achieve steep declines in network usage 599	
(and hence in the number of workplace chargers needed to support drivers) by encouraging drivers to 600	
charge at lower SOC, with the greatest impact achieved by pushing down relatively high SOC floor 601	
values to 50%; diminishing returns accompany further behavioral change.  These benefits hinge upon 602	
combinations of EV charger throughput and dwell time that sufficiently charge the larger empty portion 603	
of the battery.  604	

Encouraging BEV drivers to run down their batteries more deeply is a substantial point of 605	
leverage to improve network utilization and reduce stall electrification requirements.  Indeed, SOC may 606	
be suited to behavioral intervention, e.g. financial incentives that encourage deeper charging sessions.  If 607	
institutional policy can encourage drivers to travel farther between charging sessions (in effect reducing 608	
SOC), that can reduce the number of chargers the institution must otherwise install to meet drivers’ 609	
needs.   610	
 611	

 
Fig. 9.  The effect of SOC (the SOC to which drivers allow their batteries to fall before charging) on a, plug-in 
rate and b, charging sessions per week per driver.  SOC varies widely among UCSD EV drivers and is the most 
important human behavioral parameter in the model.  SOC for PHEVs is set to 0.  SOC = 0.64 is the baseline 
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value observed among BEV drivers in UCSD’s EV club; SOC = 44% and 83% indicate the sensitivity values in 
Section 5.2.  

 612	
5.5 EV chargers and parking rules: a key synergy 613	
 614	

Charger capabilities (kW throughput) and session dwell time rules (h) interact to affect the 615	
maximum energy (kWh) that drivers recoup per session—and hence the number of workplace sessions 616	
drivers require.  They are the two variables that institutions likely have the most control over.   617	

We vary dwell time from 2 h to 12 h, indicating policies that prioritize access (a workday 618	
plausibly permits four 2-h sessions) or convenience (a 12-h dwell time allows a driver to plug in and 619	
disregard their EV for the entire workday).  In tandem, we vary charger kW-throughput from 2 kW to 18 620	
kW, indicating level-1 chargers compatible with 120 V outlets and higher-end level-2 charger that are 621	
common in workplace settings.7  622	

Fig. 10 shows the change in network usage for each combination of charger type and dwell time 623	
limit.  Two observations stand out.  First, an institution’s dwell time policy has a larger effect on drivers’ 624	
network usage when the institution uses lower-kW-throughput chargers.  At lower kW throughput, the 625	
dwell time constraint becomes increasingly binding, limiting the energy drivers can recoup and driving 626	
up the number of sessions they need.  Second, higher products of kW-throughput and dwell time reduce 627	
network usage but eventually see diminishing returns.  For UCSD’s drivers, returns plateau at 40–50 628	
kWh per session.  For example, with a 8-h dwell time policy, little is gained with respect to reducing 629	
network usage by installing chargers with >6.25 kW capacity.   630	

As a corollary, with sufficiently high kW-throughput (≥12 kW), dwell time ceases to 631	
meaningfully affect network usage (except for the 2-h dwell time); while with sufficiently high dwell 632	
time (12 h), kW-throughput ceases to meaningfully affect usage (except for 2 kW chargers).   633	

In making decisions about the types of chargers to install (and the dwell time rules that 634	
accompany them), institutions must be mindful of drivers’ SOC floor.  Institutions could install higher-635	
kW-throughput chargers, allowing drivers to receive more energy per session.  But if drivers use them 636	
opportunistically rather than by necessity (i.e., plug in with relatively high SOC; Helmus, Lees, & van 637	
den Hoed, 2020), they recharge quickly to 100% SOC and block the stall, causing congestion (Nicholas 638	
and Tal, 2015) and low charger utilization rates.  In response, institutions could implement new rules to 639	
improve stall sharing—e.g. shorter dwell times that beget higher station utilization (but potentially 640	
burden employees by requiring them to charge more often and re-park their EV during the workday).   641	
 642	

 
7 Though level-2 chargers are common, some institutions are electrifying parking by strategically prioritizing 
level-1 chargers (UCLA Transportation, 2024).  We suspect workplaces will not emphasize DC fast chargers, due 
to high capital costs and demand charges.  
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Fig. 10.  The effect of institutional choices for installing EV chargers that differ in kW throughput and 
implementing parking rules for session dwell time on a, plug-in rate and b, weekly charging sessions.  
Variation in charger throughput (dwell time) is plotted on the x-axis (by data series). In our baseline scenarios, 
chargers have 6.25 kW throughput and stalls have a 7 h dwell time.   

 643	
5.6 Home share of charging brought to campus 644	
 645	

Building or expanding workplace EV networks may lead drivers to adjust their charging habits.  646	
We investigate one effect we suspect is likely in response to a network expansion: drivers migrating 647	
some share of charging done at home to the workplace.  We vary this share from 0% (the baseline) to 648	
50% of home charging.  (A value of 50% indicates that drivers who charge at home for, say, 60% of 649	
their energy would shift half, or 30%, to campus.)  650	

Fig. 11 shows the resulting change in network usage.  Experimental evidence at UCSD suggests 651	
drivers might have the flexibility to shift about 20% of their charging to the workplace (Garg et al., 652	
2024).  Such a shift would increase plug-in rates by 11 percentage points, from 51% to 62%.    653	

These relatively small effects reflect at least two factors.  First, of UCSD drivers who do any 654	
charging on campus, many already report doing 100% of charging there (and thus cannot increase their 655	
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charging on campus).  Second, there is headroom to increase the amount of energy delivered per session 656	
without driving up the number of sessions (since drivers park for 7 h per session, on average, but do not 657	
charge the entire time to reach 100% SOC).   658	
 659	

 
Fig. 11.  The effect of coaxing charging done at home to the institution’s workplace network on network usage 
(plug-in rate, charging sessions per week per driver).   

 660	
6. Conclusion 661	
 662	

This paper presented a new model for designing workplace EV charging networks at institutions 663	
(e.g., public entities, corporations) with regular commuters, parking facilities, and a commitment to 664	
support the charging needs of EV-driving constituents.  The novelty of our approach is that it is built 665	
centrally around the real behavior, habits, and preferences of drivers that would use the network.  We 666	
obtained these data from 800 EV drivers at UCSD and demonstrated the approach using UCSD’s EV 667	
network.     668	

We find that driver behavioral data significantly affect network usage.  For example, use of 669	
individual driver data, instead of regional averages that are commonly used when local estimates are 670	
unobtainable, increases network drivers’ network usage threefold.  In addition, the goals for supporting 671	
drivers that an institution could plausibly set for itself have a similarly large impact—also affecting 672	
network usage threefold.   673	

Institutions should exercise caution about the level of charging they commit to supporting.  Our 674	
results suggest there is value in beginning with modest support, evaluating network usage and driver 675	
satisfaction, and increasing ambition over time.  While an institution could ensure needs are met (at very 676	
high cost) by electrifying every parking stall, we find that drivers plug in to the workplace EV network 677	
on 51% of their commutes, on average.  That translates to about 1.5 sessions per week per driver, on 678	
average.    679	

The EV chargers that institutions install, the parking rules they implement to govern them, and 680	
driver behavior interact in complex ways that affect charging needs, network usage, and network design.  681	
Our model helps not only to answer questions around network design, but also to identify the key 682	
unknowns in human behavior that most affect network design. Particularly important is the minimum 683	
SOC with which drivers typically plug in to charge (equivalently, the distance they drive, or the 684	
percentage of their battery they use, between charges).   685	
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A major unknown, which our model does not currently treat, is how human behavior may change 686	
as a workplace network forms or expands.  Future work is needed to understand these feedback effects.  687	
For example, although institutions cannot directly control drivers’ minimum SOC, it may be malleable 688	
or amenable to shaping, e.g. through pricing and incentives that encourage “deeper” sessions.  Ongoing 689	
work by our team includes controlled trials and natural experiments aimed at understanding human 690	
behavioral responses to incentives, price changes, and expansions in the number of workplace chargers.  691	
 Finally, while we have focused our effort here on how driver behaviors and habits shape their 692	
workplace charging needs, understanding how those needs in turn shape optimal network design 693	
requires further work.  We have framed an optimization routine and simulation algorithm that determine 694	
network design as a function of drivers’ needs, but what is needed next is systematic analysis that 695	
applies them to emergent networks in the real world.  In future work, we intend to analyze the 696	
performance of these algorithms and the factors that most shape network design.  697	
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