
Integrating human behavior into planning models
for workplace EV charging networks

Jeff Myers∗, Ryan Hanna†¶, Emily Carlton∗, Teevrat Garg∗, Jan Kleissl‡, Sebastian Tebbe∗,
David G. Victor∗, Byron Washom§, and Josh Kavanagh§

∗School of Global Policy and Strategy, University of California San Diego, La Jolla, CA 92093 USA
†Center for Energy Research, University of California San Diego, La Jolla, CA 92093 USA

‡Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093 USA
§University of California San Diego, La Jolla, CA 92093 USA

¶Corresponding author e-mail: rehanna@ucsd.edu

Abstract—Many institutions are grappling with how to support
their employees and other constituents who drive electric vehicles
(EVs) by providing local charging services. We formulate a
novel “parking stall electrification” model that estimates con-
stituents’ charging needs and can guide institutional strategy
for deploying and expanding workplace charging. Unlike most
prior literature, our model explicitly incorporates commuter
behavior—pivotal for any network built to operate under real-
world commuter conditions—derived from recurring surveys
of EV drivers (N=626) at the University of California San
Diego (UCSD). We demonstrate the model at UCSD using these
behavioral data and find that institutional goals and choice of
chargers have a profound effect on commuters’ network usage
and stall electrification requirements. To support practitioners,
we have made the full model and a sample dataset available to
the public at https://tinyurl.com/2v262znh.

Index Terms—Commuting, decarbonization, electric vehicle,
electrification, transportation

I. INTRODUCTION

Societal shifts from gasoline to electric vehicles (EVs), al-
ready well underway in numerous countries [1], are pivotal to
cutting greenhouse gas (GHG) emissions from transportation.
Although such shifts have occurred in tandem with home
charging [2], workplace charging remains crucially important
for at least two reasons: 1) whereas most early EV adopters
tend to be wealthier homeowners [3], later mass adopters will
likely have less access to private home charging [4]; 2) as
electric grids transition to greater shares of renewables, cutting
vehicle emissions requires that EVs charge when renewable
energy generation is abundant (in California, daytime) [5].

At the same time, many institutions (corporations, public
entities, universities) have committed to net-zero carbon goals.
To reduce Scope 3 GHG emissions associated with commuting
(perhaps 17% of university GHG emissions [6]), they are en-
couraging a switch to EVs while installing workplace chargers.

At such motivated institutions, decision-makers must grap-
ple with numerous strategic planning decisions: how much
charging do constituents need? How many parking stalls
should be “electrified,” i.e. converted to EV stalls or EV-
ready stubouts, to meet these needs? Which kinds of chargers?
Should parking rules change?

Answers to these questions depend centrally on the insti-
tution’s EV drivers and their behaviors, habits, and needs.
While human behavior has been studied extensively for home
charging [7], little is known about workplace charging behav-
iors. Indeed, prior research on planning models for workplace
charging networks has largely ignored human behavior [8],
bypassed it by using idealized behavior [9, 10], or otherwise
neglected the driving and charging habits of the drivers that
workplace networks are intended to serve [11].

This paper addresses these gaps by focusing on how human
behavior affects institutions’ plans for supporting EV-driving
constituents. We develop a new planning model for workplace
stall electrification built centrally on the real behaviors and
habits of an institution’s constituents. These new data, obtained
from driver surveys, explicitly resolve human behavioral pa-
rameters for driving and charging. The model can be used to
quantify network usage and sufficiency, plan for future stall
electrification, and analyze the effects of institutional policies
aimed at supporting EV commuters. We demonstrate the
model using a large set (N=626) of EV driver data collected
as part of a new EV club at the University of California
San Diego (UCSD)—one of the world’s largest institutional
charging hubs [12].

In what follows, Section II introduces our analytical model;
Section III demonstrates the model using real driver data; and
Section IV concludes with remarks on ongoing work.

II. MODEL DESCRIPTION

Our model—for “parking stall electrification”—frames the
decision problem of an institution with regular commuters,
parking facilities, and a commitment to support the charging
needs of EV-driving constituents. It generates fundamental
information about network usage (how commuters use the
network to meet their needs), “hosting capacity” (the number
of commuters the network could accommodate given driver
behavior and parking rules); and sufficiency (whether hosting
capacity fulfills commuters’ needs). It is also an analytical tool
and can be used to analyze, e.g., how parking rules, driver
behavior, planned charger investments, and institutional goals
interact to affect commuters’ network usage and needs.
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The model also points toward questions of network expan-
sion: given EV adoption rates, how should planners invest over
time to support a growing EV population? How do technology
and market forecasts affect this need? What are the risks of
investing too quickly, possibly leading to stranded assets as old
chargers and stubout capabilities are eclipsed by new needs
and capabilities?

For now, we set aside these and other important questions
around pricing, business models, and minimizing EV charging
emissions. Our focus here is network sufficiency and usage—
both the number of charge sessions commuters initiate to
maintain charge in their EVs and their plug-in rates (i.e.,
the share of commutes that end in a workplace EV stall).
To calculate these, institutions must know four things: the
driving and charging habits of their EV-driving constituents;
constituents’ EVs; the institution’s parking rules and charging
network; and its goals for meeting drivers’ charging needs
(Fig. 1). We discuss each in turn.

Fig. 1. Model structure: input data and outputs.

A. Model input

EV drivers and behavior. In our model, drivers are char-
acterized by their driving and charging habits. Driving habits
include home-to-workplace commute distance d (mi), com-
mute frequency f (per week), and annual driving totals for total
mileage M total (mi), commuting mileage M commute, other (non-
commuting) mileage M other, and weekday mileage Mweekday.
For each driver i ∈ {1, ..., N}, we calculate a unique driving
profile: M commute

i = 52fidi, where di is estimated per the
institution’s address and driver’s zip code, and fi and di are
reported via survey; M total

i is obtained and updated through
periodic odometer reading surveys; and M other

i = M total
i –

M commute
i . Because our odometer surveys are monthly, we

estimate weekday driving as Mweekday
i = αM total

i , where α
is the fraction of total driving that occurs on weekdays, per

regional or national statistics. For this paper, we apply a
simpler model that uses a regional average for M total, α,
and the fraction of total driving that is commuting β. In
this rendering, Mweekday = αM total, M commute = βM total, and
M other = M total – M commute.

Charging habits include the fraction of charging done at
home Chome and the workplace Cwork, measured on an energy
(kWh) basis (both reported via survey); the state-of-charge
(SOC) drivers maintain as a minimum (i.e., by which they
plug in to charge), SOC; and the fraction of total driving done
on electricity ϵ (applicable to plug-in hybrid EVs—PHEVs).

EVs. EVs are characterized by their type (BEV—battery
EV, or PHEV), battery size B (kWh), and electric range
Relec (mi). EV type matters because BEVs and PHEVs have
different charging patterns: PHEVs could be high-frequency
chargers [13] because they have smaller batteries and electric
ranges commensurate to commute distances, or low-frequency
chargers if they commonly drive on gasoline. We consider ϵ,
given in Eq. (1), per [14], where ND = 700 mi is normalized
distance and c = [13.1, –18.7, 5.22, 8.15, 3.53, –1.34, –4.01,
–3.9, –1.15, 3.88] is a weighting coefficient. While ϵ depends
on driver behavior, mean values (given variation in Relec) are
0.2–0.7. For BEVs, ϵ = 1.

ϵi =

{
1, if BEV

1− exp
(
–
∑

j(R
elec
i )j ND−j cj

)
, if PHEV .

(1)

To calculate an EV’s charging need, we first calculate its
effective battery size Beff and effective range Reff. Effective
battery size, given by Beff

i = Bi(1 − SOCi), is the regularly
used portion of the battery and respects that drivers often plug
in with ample remaining battery charge. For BEVs, standard
practice is to maintain SOC above 20% (i.e., SOC = 0.2).
BEVs thus have Beff < B. For PHEVs, we set SOC = 0. Reff,
given in Eq. (2), is the distance an EV can travel between
plug-ins, respecting how human behavior affects SOC and ϵ.
Reff is < Relec for BEVs and > Relec for PHEVs.

Reff
i = Relec

i (1− SOCi) ϵ
–1
i ∀i = 1, . . . , N (2)

EV chargers and parking rules. Chargers are defined by
their power delivery P (kW throughput), while parking rules
cap the dwell time or session duration τ (hours). EV chargers
can thus deliver maximum session energy Echarger = Pτ
(kWh). Chargers and parking rules matter because they affect
Echarger and, in turn, mileage recouped per session. With
higher-kW-throughput chargers, drivers can receive more en-
ergy per session. But if drivers use them opportunistically
rather than by necessity (i.e., plug in with relatively high
SOC) [15], they recharge quickly and block the stall, caus-
ing congestion [16] and low charger utilization rates. In
response, institutions could implement new rules to improve
stall sharing, e.g. shorter dwell times that permit higher
station utilization (but burden employees by requiring them to
charge more often and re-park their EVs during the workday).
Alternatively, they could install a greater number of long-dwell
chargers with lower, variable power delivery and automated
load management.
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Institutional policy for meeting drivers’ charging needs.
Not all EV drivers have access to home charging; some rely
primarily on workplace charging. Institutions that wish to sup-
port EV-driving constituents with charging services must first
define the extent of that “support,” since stall electrification
requirements follow directly from it.

Institutions could aim for different levels of support. They
could meet a subset of constituents’ driving miles (e.g.,
commuting mileage M commute or total mileage M total) or
some fraction of constituents’ charging needs (e.g., 100% of
charging or only the portion of charging not already done at
home 1 − Chome), or they could combine these aims, among
potential other options. Support manifests as an institutional
goal for meeting some annual mileage, denoted M+. As
we will show, institutional goals matter: they are strategic
decisions that the institution has direct control over, they
implicate ideals of fairness and access, and they are often the
determinant variables in the model—i.e., those that most affect
model outputs.

B. Model output

Idealized charge session. For each driver i, we calculate the
energy delivered Ei, in Eq. (3), and range added Ri, in Eq.
(4), during an idealized charge session—i.e. one that draws
maximal energy. An EV charger can deliver up to Echarger kWh
but no more than the effective battery capacity Beff

i . Delivered
energy Ei begets an increase in range Ri that is proportional
to the fraction of battery replenished, Ei/B

eff
i .

Ei = min
{
Echarger, Beff

i

}
∀i = 1, ..., N (3)

Ri =
Ei

Beff
i

Reff
i ∀i = 1, ..., N (4)

Total charge sessions and plug-in rates. To recoup energy
equivalent to M+ annual miles, driver i requires σannual

i annual
charge sessions, given in Eq. (5). σannual considers that PHEVs
drive only a fraction ϵ of total miles on electricity, will drive
farther than Relec before charging, and hence require fewer
charge sessions than implied by Relec alone.

Given a driver’s required number of weekly charge sessions,
given by 1/52 σannual

i , and their weekly commute frequency
fi, we can calculate the fraction of workplace commutes that
must end in an EV stall, ϕi, given in Eq. (6)—what we call the
“plug-in rate.” In our model, drivers do not make additional
commutes just to charge; if required charges exceed commutes
(i.e., if 1/52σannual

i f–1
i > 1), we assume they charge outside

the workplace and initiate fi weekly workplace sessions.
The number of weekly charge sessions that driver i initiates

is σweekly
i , given in Eq. (7); and the total weekly sessions

(defined by Ei) that the institution must accommodate is
Σiσ

weekly
i .

σannual
i =

M+

Ri
ϵi ∀i = 1, ..., N (5)

ϕi = min

{
1

52
σannual
i f–1

i , 1

}
∀i = 1, ..., N (6)

σweekly
i = ϕifi ∀i = 1, ..., N (7)

III. CASE STUDY AT UC SAN DIEGO

A. Input data and scenarios

To demonstrate the model, we apply real data from a subset
of UCSD—a large institution with 75,000 affiliates (students,
staff, faculty), 3.1 MW of distributed solar PV [17], 14,000
parking spaces, and a growing EV network [18] of 331 level-2
chargers, 13 direct-current fast chargers (DCFC), and >2,000
unique EV drivers. An additional 760 level-2 chargers and 35
DCFCs are anticipated by year-end 2025. Most chargers have
a 4-h dwell time and throughput of 6.25 kW . (For simplicity,
we neglect the smaller but growing share of 12-h dwell stations
and 1-h dwell DCFCs.)

EV driver behavior is central to our model and the campus’s
EV planning efforts. To gather behavioral data, we created a
campus club for EV-driving affiliates (N=626 and is growing).
Drivers who opt in receive discounts on campus charging
and, in return, respond to recurring surveys about their EV,
commuting and driving, and charging habits. Averages for an-
nual mileage, commute mileage, roundtrip commute distance,
and commute frequency are 11,000 mi, 4,867 mi, 28 mi, and
3.3 commutes/week. (For now, we use a regional average for
total driving, but future modeling will use odometer reading
data obtained via surveys.) Mean home and campus charging
fractions are 39% and 42%, respectively. BEVs comprise 76%
of the EV population.

What remains unknown—and what we investigate here—
are how the goals that the campus could set for itself shape
network needs and usage. We frame four scenarios that differ
in goals for 1) meeting drivers’ mileages (we investigate
all driving mileage and weekday mileage); and 2) meeting
drivers’ charging needs (we investigate all charging need and
all charging less that already done at home). In these four
scenarios, M+

i is set to Mweekday
i , Mweekday

i (1−Chome
i ), M total

i ,
and M total

i (1–Chome
i ).

B. Weekly charge sessions and plug-in rates

Fig. 2 reports drivers’ use of the campus charging network
(plug-in rate; anticipated number of weekly charge sessions
per driver) for the four scenarios. The wide variation in
outcomes across scenarios indicates that campus policy for
supporting charging has a profound effect on plug-in rates and
charge sessions. Scenario 2, for example, has a plug-in rate
of 33%—the lowest among the four and less than half that
of Scenario 3 (78%). In other words, a campus commitment
to supply energy for commuters’ full charging and driving
needs (Scenario 3) would more than double campus network
usage compared to a commitment to meet only their non-home
charging and weekday driving (Scenario 2).

EV type can lead to moderate differences in outcomes. In
Scenarios 1 and 3, for example (wherein the campus meets all
charging needs), PHEVs plug in 26% more often than BEVs
because they drive less between charge sessions (75 mi vs. 86
mi). In Scenarios 2 and 4, these differences become negligible
because PHEV drivers do more home charging (45%) than
BEV drivers (37%) and hence rely less on workplace sessions.
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Fig. 2. Plug-in rate (i.e., the percentage of commutes to campus that must end
in an EV stall for drivers to recoup mileage) (A) and weekly charge sessions
per driver (B) for four scenarios in which the campus supports weekday-only
driving (scenarios 1–2) or all driving (scenarios 3–4) alongside all of drivers’
charging need (1, 3) or only charging not already done at home (2, 4). Markers
denote the median across all 626 drivers, 475 BEVs, and 151 PHEVs).

C. Sensitivity analysis

Fig. 3 shows how drivers’ use of the campus network
changes following variation in particular model parameters.
The baseline is Scenario 2, which represents an incipient
(minimum) level of ambition among our four scenarios that
we suspect institutions might trial initially.

Among all parameters, we find that institutional policy for
supporting charging matters most for plug-in rates, weekly
charge sessions, and hence stall electrification requirements.
Support for “All mileage, all charging” (the top bar in Fig. 3),
which is equivalent to Scenario 3, envisions that drivers charge
entirely on campus (bringing the 39% of charging currently
done at home to campus)—leading to a doubling of workplace
charge sessions. Given that such policies implicate a huge
number of additional sessions to support, institutions should
exercise care when establishing goals.

Institutions should also be mindful about the chargers they
install. Charger type (specifically power delivery; “EV charger
kW throughput”) and rules on session duration (“EV charger
dwell time”) have a large effect on outcomes. Compared to
a workplace network built exclusively on 6.25-kW stations
(as our baseline envisions), higher 39-kW-throughout stations
(equivalent to a DCFC) reduce the plug-in rate and weekly
charge sessions by about 45%. Doubling the dwell time from
4 to 8 h (a standard workday) yields a reduction of about 35%
in both outcomes. Using 3.12-kW chargers or a 2-h dwell time,
meanwhile, would increase the number of sessions by 60%.

Fig. 3. Change in plug-in rate (A) and total weekly charge sessions (B) given
variation in select model parameters. Variation is noted next to each parameter:
“Support all mileage, all charging” indicates Scenario 3; 3.12 kW and 39 kW
charger throughput indicate a shared 6.25 kW charger and DCFC; a 2 h and
8 h dwell time are the median session at UCSD and full workday; an 80%
SOC floor represents high range-anxiety charging; +/–50% home charging is
half that supported in Scenario 3; 8,650–14,000 mi annual driving are low
and high literature estimates; 33–58% of PHEV driving on electricity captures
underlying methodological differences in [14]; and 60–99% BEV share is per
industry forecasts plus a possible high-BEV future.

Driver behavior also plays a big role. A switch to higher-
throughput chargers and longer dwell times means EVs can
recoup miles in fewer sessions. But that strategy depends
pivotally on driver decisions to delay charging until the EV has
a low battery SOC. If drivers maintain SOC above 0.8, rather
than 0.2, weekly charge sessions increase by about 40%. Insti-
tutions must know their constituents’ driving patterns: credible
estimates for total annual driving span 8,650–14,000 mi—
variation which leads to 20–25% additional or fewer weekly
charge sessions. Such variation suggests extremely high value
in knowing commuters’ driving and charging profiles, for
example through surveys and odometer readings.

EV features matter the least. Longer BEV ranges, for
example, would have effectively no impact on plug-in rates,
since plug-in rates are constrained by the energy that chargers
can deliver, Echarger, rather than EV range or battery size. This
suggests that there is value, in our example, in opting for
charger-dwell-time combinations that deliver >25 kWh (6.25
kW × 4 h).

In theory, PHEVs could have a big effect on a charging
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network’s hosting capacity because they have smaller batteries
and electric ranges commensurate to commute distances. In
our study, however, the BEV-to-PHEV ratio has negligible
impact because both have similar needs, on average (with 4-h
6.25-kW stations, BEVs add 86 mi of range, while PHEVs
travel 75 mi between plug-ins). Different station dynamics,
however (higher kW throughput or dwell time), would change
this; for example, increasing dwell time to 8 h reduces BEV
plug-in rates by 47%, while PHEVs plug in just as often.

Institutional policy and driver behavior dominate in our
model, while plausible variations in policy and behavior
also have big effects. This has two key implications. One,
institutions should exercise caution in choosing the criteria by
which they support commuters. There is high value in iterative
planning that evaluates progress over time and adjusts. Two,
there is also high value in understanding the behavior of an
institution’s EV-driving constituents, such as through surveys
and EV clubs like the one we have created at UCSD that
generate vital information about the population.

IV. CONCLUSION

This paper presented a new planning model for workplace
EV charging networks at institutions (e.g., public entities,
corporations) with regular commuters, parking facilities, and
a commitment to support constituents’ charging needs. The
full model and a sample dataset are available for public use
at https://tinyurl.com/2v262znh. We demonstrated the model
using UCSD network and driver data from the campus’s
>330 chargers and >2,000 EV-driving affiliates. Unlike prior
literature, our model is built centrally upon driver behavior,
habits, and preferences obtained via a new UCSD club of 626
EV drivers who respond to recurring surveys.

The EV chargers that institutions install, the parking rules
that govern them, and driver behavior interact in complex ways
that affect charging needs and stall electrification requirements.
Our model not only helps answer questions around stall
electrification, but also helps identify the key unknowns that
need to be answered about human behavior. Our ongoing work
includes a series of human behavioral experiments to better
understand these unknowns—e.g., how drivers respond to rules
and incentives. We are also integrating forecasts into the model
so that it can inform long-term planning.
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