Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	0000000	000000	00

Electric Vehicle Charging at the Workplace: Experimental Evidence on Incentives and Environmental Nudges

Teevrat Garg Ryan Hanna Jeffrey Myers Sebastian Tebbe David G. Victor

(School of Global Policy & Strategy at University of California San Diego)

March 23, 2024

Timing of EV charging

Timing of EV charging impacts carbon emissions from cars: Assumptions

Petrol car:

EV charged at night:

EV charged at midday:

CO₂ emissions: 5.06Mt

 CO_2 emissions: 1.14Mt

CO₂ emissions: .16Mt

Context	Background	Empirics	Mechanisms	Implication	Conclusion
O●OOOO	000000	0000000	0000000	000000	OO

Location of EV charging

Shift to workplace EV charging:

- 1. Substantial decline in access to home charging through 2035
- 2. Expected increase of EV fleet to 8 mil. in California

Context	Background	Empirics	Mechanisms	Implication	Conclusion
00●000	000000	0000000	0000000	000000	OO

Timing of solar generation

Timing of EV charging could reshape California's "duck curve":

- 1. Timing of EV charging could shift net demand (consumption minus solar production) back toward midday
 - $\rightarrow\,$ Avoid curtailment of renewables
 - $\rightarrow\,$ As transportation electrifies and grids decarbonize, timing EV charging becomes critical

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000●00	000000	0000000	0000000	000000	OO
Contribu	tions				

► We provide experimental evidence on how environmental nudges and financial incentives shift *where* and *when* drivers charge their EV

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000●00	000000	0000000	0000000	000000	OO
Contribu	tions				

▶ We provide experimental evidence on how environmental nudges and financial incentives shift where and when drivers charge their EV

Ancillary contributions:

- 1. Experimental setting:
 - $\rightarrow\,$ We build an experimental basis for workplace EV research

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000●00	000000	0000000	0000000	000000	OO
Contribu	tions				

▶ We provide experimental evidence on how environmental nudges and financial incentives shift where and when drivers charge their EV

Ancillary contributions:

- 1. Experimental setting:
 - $\rightarrow\,$ We build an experimental basis for workplace EV research

2. Timing of charging:

- \rightarrow We measure the effect of interventions on temporal shifts in workplace charging
- \rightarrow Derive three mechanisms that explain temporal shifts

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000●00	000000	0000000	0000000	000000	OO
Contribu	tions				

▶ We provide experimental evidence on how environmental nudges and financial incentives shift where and when drivers charge their EV

Ancillary contributions:

- 1. Experimental setting:
 - $\rightarrow\,$ We build an experimental basis for workplace EV research

2. Timing of charging:

- \rightarrow We measure the effect of interventions on temporal shifts in workplace charging
- \rightarrow Derive three mechanisms that explain temporal shifts

3. Policy implications:

 $\rightarrow\,$ We derive charging policy strategies that align with sustainability objectives

Context	Background	Empirics	Mechanisms	Implication	Conclusion
0000●0	000000	0000000	0000000	000000	OO
Preview	of results				

Empirical findings:

- ▶ No significant effect on total charging behavior
- ▶ Interventions induced opposite temporal shifts:
 - \rightarrow Environmental nudges induced a transition from early to later morning
 - $\rightarrow\,$ Discounts prompted a shift from daytime to overnight and early morning charging

Context	Background	Empirics	Mechanisms	Implication	Conclusion
0000●0	000000	0000000	0000000	000000	OO
Preview	of results				

Empirical findings:

- ▶ No significant effect on total charging behavior
- ▶ Interventions induced opposite temporal shifts:
 - \rightarrow Environmental nudges induced a transition from early to later morning
 - $\rightarrow\,$ Discounts prompted a shift from daytime to overnight and early morning charging

Mechanisms:

- Quality of the charging network
 - $\rightarrow\,$ Garages with high network utilization and low glitch rates
- Experimental incentive structure
 - $\rightarrow\,$ Incentive-induced scarcity concerns
- Driver demographics
 - $\rightarrow\,$ Flexibility of commuters and convenience of home charging

Context	Background	Empirics	Mechanisms	Implication	Conclusion
0000●0	000000	0000000	0000000	000000	OO
Preview	of results				

Empirical findings:

- ▶ No significant effect on total charging behavior
- ▶ Interventions induced opposite temporal shifts:
 - \rightarrow Environmental nudges induced a transition from early to later morning
 - $\rightarrow\,$ Discounts prompted a shift from daytime to overnight and early morning charging

Mechanisms:

- Quality of the charging network
 - $\rightarrow\,$ Garages with high network utilization and low glitch rates
- Experimental incentive structure
 - $\rightarrow\,$ Incentive-induced scarcity concerns
- Driver demographics
 - $\rightarrow\,$ Flexibility of commuters and convenience of home charging

Policy implications:

- Environmental nudges would reduce cost of CO_2 emission by \$16.1 mil.
- ▶ First and second financial discount would increase cost of CO₂ emissions by \$13.2 mil. and \$7.5 mil.

Context	Background	Empirics	Mechanisms	Implication	Conclusion
00000●	000000	0000000	0000000	000000	OO
Literatur	e review				

This work speaks to two strands of literature:

- 1. Home charging experiments
 - 1.1 Temporal shifts in home charging (Bailey et al. 2023)
 - 1.2 Effect on total charging behavior:
 - Pricing strategies (Motoaki & Shirk, 2017; Davis & Bradley, 2012; Langbroek *et al.*, 2019; Kacperski *et al.*, 2022), financial penalties (Asensio *et al.*, 2016), and prizes and auctions (Fetene *et al.* 2017)
 - Information on cost savings (Nicolson *et al.*, 2017), charging sourced from renewable energy (Nienhueser & Qui, 2016), and tailored at point of charge (Asensio *et al.* 2021)
- 2. Workplace EV networks
 - 2.1 Efficiency of charging policy strategies (Caperello et al. 2013; Bonges et al. 2016)
 - \rightarrow Public messaging systems (Sutton *et al.* 2022), and policies on unplugging (Wolbertus & van den Hoed, 2017)

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	●00000	0000000	0000000	000000	OO
Experiment					

Goal:

▶ Promote daytime workplace charging - *where* and *when* people charge

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	●00000	0000000	0000000	000000	OO
Experiment					

Goal:

▶ Promote daytime workplace charging - *where* and *when* people charge

Experimental interventions:

- 1. Environmental nudges about the climate benefits of daytime charging
 - \rightarrow Run over 18 days from October 4–23
- 2. Financial discounts for workplace charging (irrespective of time)
 - ightarrow Two phases of financial treatment run over 26 days from October 24 to November 19
- 3. Follow-up experiment on scarcity concerns
 - \rightarrow Run over 13 days from February 5-17

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	●00000	0000000	0000000	000000	OO
Experiment					

Goal:

▶ Promote daytime workplace charging - *where* and *when* people charge

Experimental interventions:

- 1. Environmental nudges about the climate benefits of daytime charging
 - \rightarrow Run over 18 days from October 4–23
- 2. Financial discounts for workplace charging (irrespective of time)
 - ightarrow Two phases of financial treatment run over 26 days from October 24 to November 19
- 3. Follow-up experiment on scarcity concerns
 - \rightarrow Run over 13 days from February 5-17

Experimental setting:

- ▶ We conducted the field experiment at UCSD in coordination with
 - $\rightarrow\,$ Campus administrators responsible for campus charging policy and pricing
 - $\rightarrow\,$ Two leading charging vendors, ChargePoint and PowerFlex, who collect and share charge session data
- ▶ We created a campus club for EV drivers the "Triton Chargers" open to UCSD affiliates
 - $\rightarrow\,$ Drivers opt-in, consent to research, answer surveys, and receive discounts on campus charging

Design of informational intervention

Informational nudges:

- Stating the climate benefits of daytime compared to nighttime charging in an email, delivered three times (once per week)
 - \rightarrow Benefits are reported as avoided CO_2 emissions, equivalent unburned gasoline, and prevented global environmental damages

Design of financial intervention

First phase of financial intervention: Financial prompt 1

- > One-third of participants receive a small discount ((16/kWh) 50% off the base campus rate
 - \rightarrow Effective small-discount rate (\$.14/kWh) is slightly less than cheapest overnight home charging rate of the local electric utility (SDG&E)
- ▶ Two-thirds receive a large discount (\$.23/kWh) 75% off the base campus rate
 - \rightarrow Large-discount rate (\$.07/kWh) equals locational marginal price of wholesale electricity, corresponding to the plausible lowest cost that drivers would pay for charging

Design of financial intervention

First phase of financial intervention: Financial prompt 1

- > One-third of participants receive a small discount ((16/kWh) 50% off the base campus rate
 - \rightarrow Effective small-discount rate (\$.14/kWh) is slightly less than cheapest overnight home charging rate of the local electric utility (SDG&E)
- ▶ Two-thirds receive a large discount (\$.23/kWh) 75% off the base campus rate
 - \rightarrow Large-discount rate (\$.07/kWh) equals locational marginal price of wholesale electricity, corresponding to the plausible lowest cost that drivers would pay for charging

Second phase of financial intervention: Financial prompt 2

- ▶ Three treatment arms—LL (Large-Large), LS (Large-Small), and SS (Small-Small) discounts
 - $\rightarrow\,$ Test for the presence of habit formation when financial discounts are reduced

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000●00	0000000	0000000	000000	00

Experimental design

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	0000●0	0000000	0000000	000000	OO
Datasets					

We combine various data sources for our experiment (October 4–November 19):

- 1. Charging network data Parking stalls Parking features
 - \rightarrow 331 Level-2 charging ports: 249 from ChargePoint, 72 from PowerFlex
 - \rightarrow Session data (session duration, charging duration, idle duration, energy consumed)
 - \rightarrow Sample restrictions:
 - Sessions that indicate an initiation error (i.e., < .5 kWh or < 5 minutes)
 - Flout campus parking rules (i.e., exceed 16 hours)

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	0000●0	0000000	0000000	000000	OO
Datasets					

We combine various data sources for our experiment (October 4–November 19):

- 1. Charging network data Parking stalls Parking features
 - \rightarrow 331 Level-2 charging ports: 249 from ChargePoint, 72 from PowerFlex
 - \rightarrow Session data (session duration, charging duration, idle duration, energy consumed)
 - \rightarrow Sample restrictions:
 - Sessions that indicate an initiation error (i.e., < .5 kWh or < 5 minutes)
 - Flout campus parking rules (i.e., exceed 16 hours)

2. Driver data

- \rightarrow Triton Chargers EV club members provide information on
 - Demographics (age, gender, income, living arrangement, university affiliation, and education)
 - Vehicle (year, make, model, type)
 - Charging behaviors (access to charging alternatives, fraction of charging done by location)
 - Commuting behavior (commute frequency and distance, obtained via zip code)
- $\rightarrow\,$ Odometer readings to track total driving before, during, and after interventions

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	0000●0	0000000	0000000	000000	OO
Datasets					

We combine various data sources for our experiment (October 4–November 19):

- 1. Charging network data Parking stalls Parking features
 - \rightarrow 331 Level-2 charging ports: 249 from ChargePoint, 72 from PowerFlex
 - \rightarrow Session data (session duration, charging duration, idle duration, energy consumed)
 - \rightarrow Sample restrictions:
 - Sessions that indicate an initiation error (i.e., < .5 kWh or < 5 minutes)
 - Flout campus parking rules (i.e., exceed 16 hours)

2. Driver data

- \rightarrow Triton Chargers EV club members provide information on
 - Demographics (age, gender, income, living arrangement, university affiliation, and education)
 - Vehicle (year, make, model, type)
 - Charging behaviors (access to charging alternatives, fraction of charging done by location)
 - Commuting behavior (commute frequency and distance, obtained via zip code)
- $\rightarrow\,$ Odometer readings to track total driving before, during, and after interventions

3. Other data

- \rightarrow Home charging rates set by the local utility (SDG&E) Charging rates
- → Emission factors from California Air Resources Board Emission factors

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	00000●	0000000	0000000	000000	00

Participant characteristics and charging behaviors

	Mean	Std. dev.	Min	Max	Obs.
A.Demographics					
A.g.o	39.25	12.99	22	80	620
Share male (%)	0.53	0.50	0	1	629
Income (\$ '000)	135 73	66.58	25	200	557
Vears of education	17.18	3.00	11	200	629
Days on campus per week	3.26	1.75	0	6	629
B.Vehicle attributes					
Vehicle age (years)	2.38	2.59	0	22	629
Battery electric (%)	0.76	0.43	õ	1	629
Odometer reading (miles)	29153.09	28770.26	28	205,069	422
C.Commuting and charging habi	ts				
Daily mileage (miles)	39.95	40.83	0	491	318
Home charger (%)	0.59	0.49	0	1	629
Charging price (\$ per kWh)	0.18	0.12	0	1	382
D.Outcome variables					
Share of charging on campus	30.70	34.60	0	100	313
Weekly charging sessions	0.89	1.21	õ	9	629
Energy consumed (kWh)	18.72	12.32	1	67	401
Session costs (\$)	5.35	3.53	0	18	401
Session duration (min)	312.33	170.62	23	792	401
Charging duration (min)	228.53	136.92	21	749	401
Idle duration (min)	83.79	102.51	0	614	401

Supplementary statistics

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	●000000	0000000	000000	OO

Estimating equations

Effect of interventions on charging behavior:

 $y_i = \beta \operatorname{Info}_i + \delta \operatorname{Reward}_{1i} + \eta (\operatorname{Info}_i \cdot \operatorname{Reward}_{1i}) + \gamma X_i + \alpha_j + \eta_t + \varepsilon_i$ (1)

- ▶ *y_i* : Charging outcome variable of interest
- Infoi : 1 if the individual received the informational prompts
- ▶ $Reward_{1i}$: 1 if the individual received the large discount in the first financial treatment
- \triangleright X_i : Demographics, vehicle and charging characteristics, and motivation about charging
- > η_t : Dummy variable for UCSD's "Clean Air Day" (campus advertised charging discounts of 50%)
- α_j : Vehicle fixed effects

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	●000000	0000000	000000	OO

Estimating equations

Effect of interventions on charging behavior:

 $y_i = \beta Info_i + \delta Reward_{1i} + \eta (Info_i \cdot Reward_{1i}) + \gamma X_i + \alpha_j + \eta_t + \varepsilon_i$ (1)

- ▶ *y_i* : Charging outcome variable of interest
- ▶ Info_i : 1 if the individual received the informational prompts
- \blacktriangleright Reward_{1i} : 1 if the individual received the large discount in the first financial treatment
- ▶ X_i : Demographics, vehicle and charging characteristics, and motivation about charging
- > η_t : Dummy variable for UCSD's "Clean Air Day" (campus advertised charging discounts of 50%)
- α_i : Vehicle fixed effects

Coefficients of interest:

- \blacktriangleright β : Response to informational treatment
- $\blacktriangleright \ \delta$: Response to first financial treatment
- $\blacktriangleright~\eta$: Interaction effect between information and financial treatment

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	•000000	0000000	000000	OO

Estimating equations

Effect of interventions on charging behavior:

 $y_i = \beta Info_i + \delta Reward_{1i} + \eta (Info_i \cdot Reward_{1i}) + \gamma X_i + \alpha_j + \eta_t + \varepsilon_i$ (1)

- ▶ y_i : Charging outcome variable of interest
- ▶ *Info_i* : 1 if the individual received the informational prompts
- \blacktriangleright Reward_{1i} : 1 if the individual received the large discount in the first financial treatment
- ▶ X_i : Demographics, vehicle and charging characteristics, and motivation about charging
- > η_t : Dummy variable for UCSD's "Clean Air Day" (campus advertised charging discounts of 50%)
- α_j : Vehicle fixed effects

Coefficients of interest:

- $\blacktriangleright \ \beta$: Response to informational treatment
- $\blacktriangleright \ \delta$: Response to first financial treatment
- $\blacktriangleright~\eta$: Interaction effect between information and financial treatment

Second financial treatment:

 \blacktriangleright Reward_{2i} : 1 if the individual received the large discount in the second financial treatment

Charging outcome of interest

Total charging behavior:

- 1. Share of charging done on campus
 - → Total energy consumed from campus charging divided by the expected energy consumed from total driving)
- 2. Number of sessions initiated
- 3. Energy consumed
- 4. Session cost
- 5. Session duration
- 6. Charging duration
- 7. Idle duration

Timing of charging behavior:

- 1. Overnight (21:00-4:59)
 - \rightarrow Low network utilization
- 2. Early morning (5:00-6:59)
 - $\rightarrow\,$ Early morning commuters and low utilization
- 3. Morning (7:00-9:59)
 - $\rightarrow\,$ Arrival of most regular commuters and a rapid surge
- 4. Midday (10:00-15:59)
 - $\rightarrow\,$ High utilization and maximal solar generation
- 5. Evening (16:00-20:59)
 - $\rightarrow\,$ Departing commuters, arrival of nighttime workers, and waning solar generation

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	00●0000	0000000	000000	00

Total charging behavior by day

Total charging activity for six measures of campus charging:

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	0000000	000000	00

Effect on total charging behavior

	Total charging behavior						
	(1) Share	(2) Sessions	(3) Energy	(4) Cost	(5) Duration	(6) Charge time	(7) Idle time
A. Informational prompt	.501	002	-1.471	589	-47.084	-18.950	-28.159
Mean Dep. Var.	30.37	2.47	42.67	(1.485) 11.89	784.07	547.62	236.43
B. Financial incentive 1	170 (4 029)	040 (199)	5.349 (3.917)	1.546 (1.133)	46.346 (68 710)	53.400 (49.377)	-7.051 (29.872)
Mean Dep. Var.	34.67	1.71	30.84	8.91	549.03	390.56	158.48
C. Financial incentive 2	1.824 (4.821)	.313 (.251)	5.127 (5.551)	1.537 (1.616)	89.069 (91.692)	62.649 (67.101)	26.454 (39.365)
Mean Dep. Var.	31.89	1.73	31.6	9.17	560.06	391.2	168.85
D. Information \boldsymbol{x} large discount	-2.195 (3.732)	070 (.461)	.601 (8.775)	.119 (2.464)	-94.626 (166.376)	-34.872 (112.816)	-59.771 (82.161)
Observation	`350 ´	`629 ´	`629´	629	629	629	`629´

Garg, Hanna, Myers, Tebbe & Victor (UCSD)

Between group-substitution

Substitution among commuter groups:

- Shift in charging sessions from high- to medium-utilization garages during the informational treatment Charging utilization
- Increase in campus charging by commuters who experience low glitch rates during the second financial discount Charging glitches
 - $\rightarrow\,$ Larger campus charging responses from workplace charging facilities characterized by lower congestion and greater reliability
- ► Substitution in total charging behavior from infrequent to frequent commuters Charging commute frequency
 - \rightarrow Larger campus charging responses from commuters with greater flexibility

Charging sessions and energy consumed by hour of the day:

▶ Information shifts initiated charging sessions from morning to midday

Charging sessions and energy consumed by hour of the day:

- ▶ Information shifts initiated charging sessions from morning to midday
- First discount shifts initiated charging sessions to overnight and early morning

Charging sessions and energy consumed by hour of the day:

- ▶ Information shifts initiated charging sessions from morning to midday
- First discount shifts initiated charging sessions to overnight and early morning
- Second discount shifts initiated charging sessions to midday and evening

Context	Background	Empirics	Mechanisms	Implication	Conclusior
000000	000000	000000●	0000000	000000	00

	Timing of initiated charging session				
	(1) 21-5	(2) 5-7	(3) 7-10	(4) 10-16	(5) 16-21
A. Informational prompt	048	124*	.202	049	.017
Mean Dep. Var.	(.044) .09	(.072) .2	(.176) 1.05	(.137) .75	(.083) .37
B. Financial incentive 1	.061**	.084*	076	043	046
Mean Dep. Var.	.07	.13	.76	.49	.26
C. Financial incentive 2	.040	061	002	.194*	.205**
Mean Dep. Var.	(.062) .07	(.082) .19	(.140) .71	.63	(.093) .26
D. Information x large discount	045	146	.106	.011	.003
Observation	629	629	629	629	629

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	●000000	000000	OO

Main mechanisms

Mechanisms:

- 1. Quality of the charging infrastructure
 - \rightarrow Network utilization
 - \rightarrow Charger reliability

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	●000000	000000	OO

Main mechanisms

Mechanisms:

- 1. Quality of the charging infrastructure
 - \rightarrow Network utilization
 - \rightarrow Charger reliability
- 2. Experimental incentive structure
 - $\rightarrow\,$ Incentive-induced perception of scarcity
| Context | Background | Empirics | Mechanisms | Implication | Conclusion |
|---------|------------|----------|------------|-------------|------------|
| 000000 | 000000 | 0000000 | ●000000 | 000000 | OO |
| | | | | | |

Main mechanisms

Mechanisms:

- 1. Quality of the charging infrastructure
 - \rightarrow Network utilization
 - \rightarrow Charger reliability
- 2. Experimental incentive structure
 - $\rightarrow\,$ Incentive-induced perception of scarcity
- 3. Characteristics of drivers
 - → Flexibility of commuters
 - $\rightarrow\,$ Convenience of home charging

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	●000000	000000	OO

Main mechanisms

Mechanisms:

- 1. Quality of the charging infrastructure
 - \rightarrow Network utilization
 - \rightarrow Charger reliability
- 2. Experimental incentive structure
 - $\rightarrow\,$ Incentive-induced perception of scarcity
- 3. Characteristics of drivers
 - \rightarrow Flexibility of commuters
 - $\rightarrow\,$ Convenience of home charging

Implications:

- Predict temporal shifts in charging behavior
- ▶ Target interventions toward the most responsive socio-demographic groups.

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	O●00000	000000	OO
Network	utilization				

Network utilization:

 EV drivers at UCSD have reported difficulty finding an available charger as a primary barrier to charging on campus

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	O●00000	000000	OO

Network utilization

Network utilization:

- ► EV drivers at UCSD have reported difficulty finding an available charger as a primary barrier to charging on campus
- ▶ Network utilization of 80-90% at the two largest campus zones by 9 am Parking zones
 - \rightarrow Excludes chargers that are temporarily non-operational or out-of-service (Network operation)
 - $\rightarrow\,$ Includes stalls that are occupied by non-charging vehicles

Effect of network utilization

Network utilization: Energy - Utilization

- ▶ Temporal shifts from informational prompts are exclusively from low-utilization garages
 - ightarrow Drivers are more responsive to information when they perceive no charger scarcity
- Temporal shifts from discounts are from medium- and high-utilization garages.
 - ightarrow Drivers shift to periods with lower utilization to guarantee they receive a charge
 - \rightarrow Temporal shifts are in campus zones with high network utilization (Charging by location)

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	000€000	000000	OO
Charger	unreliability				

Session glitch rates:

- ▶ Perceived unreliability of chargers may impede EV charging (Rempel, 2022)
- ▶ 15 to 20% of charging sessions fail to deliver a meaningful energy (i.e., "glitch") Session glitch rate
- Drivers who fail to plug in successfully on their first attempt are less likely to receive a charge during successive attempt

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	000€000	000000	OO
Charger	unreliability				

Session glitch rates:

- ▶ Perceived unreliability of chargers may impede EV charging (Rempel, 2022)
- ▶ 15 to 20% of charging sessions fail to deliver a meaningful energy (i.e., "glitch") Session glitch rate
- Drivers who fail to plug in successfully on their first attempt are less likely to receive a charge during successive attempt

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	0000●00	000000	OO

Effect of charger unreliability

Session glitch rates: Energy - Charger reliability

- Drivers are more willing to shift their charging behavior when chargers are reliable (i.e., low-glitch-rate garages)
- ▶ Temporal shifts are mostly associated with the less-glitch-prone ChargePoint stations Charging by operator

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	000000	0000●00	000000	OO

Effect of charger unreliability

Session glitch rates: Energy - Charger reliability

- Drivers are more willing to shift their charging behavior when chargers are reliable (i.e., low-glitch-rate garages)
- ▶ Temporal shifts are mostly associated with the less-glitch-prone ChargePoint stations Charging by operator

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	00000●0	000000	OO

Experimental incentive structure

Scarcity concerns:

- Discounts could induce perceptions of charger scarcity
- Conduct a follow-up financial intervention that primes drivers' beliefs about the number of EV drivers who receive the discount Charger scarcity experiment

Experimental incentive structure

Scarcity concerns:

- Discounts could induce perceptions of charger scarcity
- Conduct a follow-up financial intervention that primes drivers' beliefs about the number of EV drivers who receive the discount Charger scarcity experiment

Scarcity results: Energy - Scarcity

• Expectations of incentive-induced scarcity resulted in shifts to overnight charging sessions

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	000000●	000000	OO
Driver cl	naracteristics				

Flexibility of commuters: Energy - Commute frequency

- ▶ Commuters with greater flexibility may be better able to adapt their commuting schedules
- Compare commuters with different commute frequency

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	000000●	000000	OO

Driver characteristics

Flexibility of commuters: Energy - Commute frequency

- Commuters with greater flexibility may be better able to adapt their commuting schedules
- Compare commuters with different commute frequency

Convenience of home charging: Home charging access Energy - Home charger

- Access to private home charging makes home charging more convenient
- Compare commuters with/without access to private home charging

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	0000000	•00000	OO
Welfare (effects				

Net welfare $\triangle W$ per driver annually:

- $\blacktriangleright \triangle CO_2$: Change in CO_2 emissions from temporal shifts in charging
- ▶ △*LCFS*: Revenues earned through CA's Low Carbon Fuel Standard (LCFS) program
- $\triangle Costs$: Cost for financial discounts

Assumptions:

- ▶ Convert treatment effects over the experiment to annual effects.
- ▶ Welfare effects of intertemporal substitution
- ▶ Welfare effects are per driver and from the institution's perspective

(2)

ContextBackgroundEmpiricsMechanismsImplicationConclusion00

Avoided CO₂ emission damages

$$\triangle CO_2 = \sum_{h=1}^{24} \left(\underbrace{\beta_h^{kWh} \cdot CI_h}_{ln \text{ formation}} + \underbrace{\delta_{1h}^{kWh} \cdot CI_h}_{D \text{ is count } 1} + \underbrace{\delta_{2h}^{kWh} \cdot CI_h}_{D \text{ is count } 2} \right) \cdot SCC.$$
(3)

- ► $\beta_h^{kWh}, \delta_{1h}^{kWh}$, and δ_{2h}^{kWh} : Response to informational, first, and second treatment on hourly energy consumption
- ▶ CI_h : Hourly carbon intensity (gCO_2/MJ) Emission factors
- SCC: Social cost of carbon (210 $\frac{\$}{tCO_2}$)

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	0000000	00000	OO

$$\triangle CO_2 = \sum_{h=1}^{24} \left(\underbrace{\beta_h^{kWh} \cdot CI_h}_{lnformation} + \underbrace{\delta_{1h}^{kWh} \cdot CI_h}_{Discount 1} + \underbrace{\delta_{2h}^{kWh} \cdot CI_h}_{Discount 2} \right) \cdot SCC.$$
(3)

- ► β_h^{kWh} , δ_{1h}^{kWh} , and δ_{2h}^{kWh} : Response to informational, first, and second treatment on hourly energy consumption
- ► CI_h : Hourly carbon intensity (gCO_2/MJ) Emission factors
- SCC: Social cost of carbon $(210 \frac{\$}{tCO_2})$

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	0000000	00000	OO

$$\triangle CO_2 = \sum_{h=1}^{24} \left(\underbrace{\beta_h^{kWh} \cdot CI_h}_{lnformation} + \underbrace{\delta_{1h}^{kWh} \cdot CI_h}_{Discount \ 1} + \underbrace{\delta_{2h}^{kWh} \cdot CI_h}_{Discount \ 2} \right) \cdot SCC.$$
(3)

- ► β_h^{kWh} , δ_{1h}^{kWh} , and δ_{2h}^{kWh} : Response to informational, first, and second treatment on hourly energy consumption
- ► CI_h : Hourly carbon intensity (gCO_2/MJ) Emission factors
- SCC: Social cost of carbon (210 $\frac{\$}{tCO_2}$)

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	0000000	00000	OO

$$\triangle CO_2 = \sum_{h=1}^{24} \left(\underbrace{\beta_h^{kWh} \cdot CI_h}_{lnformation} + \underbrace{\delta_{1h}^{kWh} \cdot CI_h}_{Discount \ 1} + \underbrace{\delta_{2h}^{kWh} \cdot CI_h}_{Discount \ 2} \right) \cdot SCC.$$
(3)

- ► β_h^{kWh} , δ_{1h}^{kWh} , and δ_{2h}^{kWh} : Response to informational, first, and second treatment on hourly energy consumption
- ► CI_h : Hourly carbon intensity (gCO_2/MJ) Emission factors
- SCC: Social cost of carbon (210 $\frac{\$}{tCO_2}$)

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	0000000	00000	OO

$$\triangle CO_2 = \sum_{h=1}^{24} \left(\underbrace{\beta_h^{kWh} \cdot CI_h}_{lnformation} + \underbrace{\delta_{1h}^{kWh} \cdot CI_h}_{Discount 1} + \underbrace{\delta_{2h}^{kWh} \cdot CI_h}_{Discount 2} \right) \cdot SCC.$$
(3)

- ► β_h^{kWh} , δ_{1h}^{kWh} , and δ_{2h}^{kWh} : Response to informational, first, and second treatment on hourly energy consumption
- ► CI_h : Hourly carbon intensity (gCO_2/MJ) Emission factors
- SCC: Social cost of carbon (210 $\frac{\$}{tCO_2}$)

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	0000000	00000	OO
LCES rev	venues				

$$\triangle LCFS = \sum_{h=1}^{24} (CI_{standard} - CI_h/3.4) \cdot (\beta_h^{kWh} + \delta_{1h}^{kWh} + \delta_{2h}^{kWh}) \cdot \bar{P} \cdot 3.4.$$
(4)

 $CI_{standard}$: Carbon intensity from gasoline-powered cars (89.5 gCO_2/MJ)

- \overline{P} : LCFS credit price per ton (64.51 $\frac{1}{t}$)
 - \rightarrow Multiply by Energy Economy Ratio (3.4)

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	0000000	00000	OO
LCFS rev	venues				

$$\triangle LCFS = \sum_{h=1}^{24} (CI_{standard} - CI_h/3.4) \cdot (\beta_h^{kWh} + \delta_{1h}^{kWh} + \delta_{2h}^{kWh}) \cdot \bar{P} \cdot 3.4.$$
(4)

Cl_{standard}: Carbon intensity from gasoline-powered cars (89.5 gCO₂/MJ)

▶ \overline{P} : LCFS credit price per ton (64.51 $\frac{1}{t}$)

 \rightarrow Multiply by Energy Economy Ratio (3.4)

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	0000000	00000	OO
LCFS rev	venues				

$$\triangle LCFS = \sum_{h=1}^{24} (CI_{standard} - CI_h/3.4) \cdot (\beta_h^{kWh} + \delta_{1h}^{kWh} + \delta_{2h}^{kWh}) \cdot \bar{P} \cdot 3.4.$$
(4)

Cl_{standard}: Carbon intensity from gasoline-powered cars (89.5 gCO₂/MJ)

▶ \overline{P} : LCFS credit price per ton (64.51 \$/t)

 \rightarrow Multiply by Energy Economy Ratio (3.4)

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	0000000	00000	OO
LCFS rev	venues				

$$\triangle LCFS = \sum_{h=1}^{24} (CI_{standard} - CI_h/3.4) \cdot (\beta_h^{kWh} + \delta_{1h}^{kWh} + \delta_{2h}^{kWh}) \cdot \bar{P} \cdot 3.4.$$
(4)

Cl_{standard}: Carbon intensity from gasoline-powered cars (89.5 gCO₂/MJ)

▶ \overline{P} : LCFS credit price per ton (64.51 $\frac{1}{t}$)

 \rightarrow Multiply by Energy Economy Ratio (3.4)

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	0000000	00000	OO
LCFS rev	venues				

$$\triangle LCFS = \sum_{h=1}^{24} (CI_{standard} - CI_h/3.4) \cdot (\beta_h^{kWh} + \delta_{1h}^{kWh} + \delta_{2h}^{kWh}) \cdot \bar{P} \cdot 3.4.$$
(4)

Cl_{standard}: Carbon intensity from gasoline-powered cars (89.5 gCO₂/MJ)

- ▶ \overline{P} : LCFS credit price per ton (64.51 $\frac{1}{t}$)
 - \rightarrow Multiply by Energy Economy Ratio (3.4)

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	0000000		OO
Cost of i	ncentives				

Financial costs of discounts:

$$\triangle Costs = (\underbrace{E_{l} \cdot \$.23/kWh}_{Large \ discount} + \underbrace{E_{s} \cdot \$.16/kWh}_{Small \ discount})$$

- \triangleright E₁, E_s: Energy consumption of the large and small discount group
- ▶ \$.16/*kWh*: Size of small discount
- ▶ \$.23/*kWh*: Size of large discount

(5)

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	0000000		OO
Cost of i	ncentives				

Financial costs of discounts:

$$\triangle Costs = (\underbrace{E_{l} \cdot \$.23/kWh}_{Large \ discount} + \underbrace{E_{s} \cdot \$.16/kWh}_{Small \ discount})$$

- \triangleright E₁, E_s: Energy consumption of the large and small discount group
- ▶ \$.16/kWh: Size of small discount
- ▶ \$.23/*kWh*: Size of large discount

Cost of incentives:

- ▶ First financial treatment: \$7.43 for the large and \$4.48 for the small discount
- ▶ Second financial treatment: \$8.59 for the large and \$4.59 for the small discount

(5)

Welfare effect decomposition

Effect on all Triton Charger EV club members:

- ▶ Treating intervention costs as transfers (i.e., omitting intervention costs)
- Informational prompts increased welfare by \$13,913
- ▶ First and second financial discounts decreased welfare by \$11,259 and \$3,126

EV owners in California (currently 1.29 million vehicles):

- ▶ Informational treatment reduces CO_2 emissions equal to \$16.1 mil.
- ▶ First and second financial discount increase CO₂ emissions by \$13.2 mil. and \$7.5 mil.

	Intervention per driver (\$)			
_	Information	Discount 1	Discount 2	
Avoided CO_2 damages ($\triangle CO_2$)	12.51	-10.23	-5.8	
LCFS revenues ($\triangle LCFS$)	9.61	-7.67	.83	
Intervention costs ($\triangle Costs$)		-328.48	-368.66	
Welfare effects ($ riangle W$)	22.12	-346.38	-373.64	
Garg, Hanna, Myers, Tebbe & Victor (UCSD)	EV Charging at the Workpla	ice	March 23, 2024	32 / 3

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	0000000		OO
Distribut	ional effects				

Strong regressive effects:

- ▶ Lowest and highest income group received \$216 and \$1,667 in discounts
 - → Given that current EV drivers are wealthier, providing financial incentives to shift these individual's charging sessions to the workplace is a highly regressive policy tool.

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	0000000	000000	●O
Conclusion					

▶ Shift charging behavior toward daytime hours with abundant solar energy

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	0000000	000000	●O
Conclusion					

▶ Shift charging behavior toward daytime hours with abundant solar energy

Experiment:

 Field experiment at UCSD campus to measure the influence of environmental nudges and financial incentives

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	0000000	000000	●O
Conclusion					

▶ Shift charging behavior toward daytime hours with abundant solar energy

Experiment:

 Field experiment at UCSD campus to measure the influence of environmental nudges and financial incentives

Empirical findings:

- Interventions induce opposite temporal shifts
 - \rightarrow Environmental nudges induced a transition from early to later morning charging
 - ightarrow Discounts prompted a shift from daytime to overnight and early morning charging
 - \rightarrow Mechanisms: Quality of the charging network, incentive-induced scarcity concerns, and driver demographics

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	0000000	000000	●O
Conclusion					

▶ Shift charging behavior toward daytime hours with abundant solar energy

Experiment:

 Field experiment at UCSD campus to measure the influence of environmental nudges and financial incentives

Empirical findings:

- Interventions induce opposite temporal shifts
 - \rightarrow Environmental nudges induced a transition from early to later morning charging
 - $\rightarrow\,$ Discounts prompted a shift from daytime to overnight and early morning charging
 - \rightarrow Mechanisms: Quality of the charging network, incentive-induced scarcity concerns, and driver demographics

Policy implications:

- ▶ Calculate annual welfare effects from avoided CO₂, LCFS, and incentive costs per driver
 - \rightarrow Emvironmental nudges yield net welfare benefit of \$22.12
 - $\rightarrow\,$ First and second financial treatments reduce welfare by \$18 and \$4.97

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	0000000	000000	O
Outlook					

 Grid operations strongly favor temporally shifting EV charging toward midday in solar-dominated grids

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	0000000	000000	O●
Outlook					

 Grid operations strongly favor temporally shifting EV charging toward midday in solar-dominated grids

Benefits of daytime charging:

- California EV stock (currently 1.29 million vehicles) would decrease annual emissions by 1.2 MMtCO₂
 - \rightarrow Gobal avoided damages of \$252 million

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	0000000	000000	O●
Outlook					

 Grid operations strongly favor temporally shifting EV charging toward midday in solar-dominated grids

Benefits of daytime charging:

- California EV stock (currently 1.29 million vehicles) would decrease annual emissions by 1.2 MMtCO₂
 - $\rightarrow\,$ Gobal avoided damages of \$252 million

CA charging behavior in 2021:

- ► 2.6 million MWh of curtailed renewable power, mainly during midday, due to a lack of demand
 - $\rightarrow\,$ 35 million full charges of an average EV, or enough to supply 633,000 EVs year-round

Context	Background	Empirics	Mechanisms	Implication	Conclusion
000000	000000	0000000	0000000	000000	O●
Outlook					

 Grid operations strongly favor temporally shifting EV charging toward midday in solar-dominated grids

Benefits of daytime charging:

- California EV stock (currently 1.29 million vehicles) would decrease annual emissions by 1.2 MMtCO₂
 - \rightarrow Gobal avoided damages of \$252 million

CA charging behavior in 2021:

- ► 2.6 million MWh of curtailed renewable power, mainly during midday, due to a lack of demand
 - ightarrow 35 million full charges of an average EV, or enough to supply 633,000 EVs year-round

Policy implications:

► As more EVs are on the road and renewable energy capacity increases, policies should encourage a shift to daytime charging to optimize power usage
Carbon emission calculations

		Vehicle type	:
	Petrol car	EV charged at night	EV charged at midday
Annual miles	11,500	11,500	11,500
Fuel per mile	.05	.33	.33
Fuel per year	575 gallons	3795 kWh	3795 kWh
Carbon intensity (<i>kgCO</i> ₂ / gallon)	8.8	.3	.04
Annual CO_2 emissions (Mt)	5.06	1.14	.16

Carbon emission damages from cars

Financial prompt 1

Research participants were notified about financial discounts via email. On October 23, ahead of the first financial treatment, the following messages were sent to the large and small discount treatment arms:

- ► [Large discount group]: From October 24 through November 5, we will offer a >75% discount on all Level-2 charging you do on campus. We are providing a \$0.23/kWh discount on the base campus price of \$0.30/kWh. That means you pay just \$0.07/kWh. After November 5, these discounts will continue, but they may change in size. We will tell you of all changes ahead of time.
- ► [Small discount group]: From October 24 through November 5, we will offer a >50% discount on all Level-2 charging you do on campus. We are providing a \$0.16/kWh discount on the base campus price of \$0.30/kWh. That means you pay just \$0.14/kWh. After November 5, these discounts will continue, but they may change in size. We will tell you of all changes ahead of time.

Design of financial intervention

Financial prompt 2

On November 5, ahead of the second financial treatment, the following messages were sent to the large–large, large–small, and small–small discount treatment arms:

- ► [Large large discount group]: In October, we announced discounted campus charging through November 5. From November 6 through November 19, your discount will remain the same. The Triton Chargers research team will continue to provide a >75% discount (\$0.23/kWh) off the base campus price of \$0.30/kWh. That means you will continue paying just \$0.07/kWh. After November 19, these discounts will continue, but they may change in size. We will tell you of all changes ahead of time.
- [Large small discount group]: In October, we announced discounted campus charging through November 5. From November 6 through November 19, your discount will now be smaller. It will decrease from about 75% to 50% off the campus's base price of \$0.30/kWh. That means you will now pay just \$0.14/kWh. After November 19, these discounts will continue, but they may change in size. We will tell you of all changes ahead of time.
- ► [Small small discount group]: In October, we announced discounted campus charging through November 5. From November 6 through November 19, your discount will remain the same. The Triton Chargers research team will continue to provide a >50% discount (\$0.16/kWh) off the base campus price of \$0.30/kWh. That means you will continue paying just \$0.14/kWh. After November 19, these discounts will continue, but they may change in size. We will tell you of all

Garg, Hanna, Myers, Tebbe & Victor (UCSD)

EV Charging at the Workplace

Parking stalls

EV-1

EV-4

ACTIVE CHARGING ONLY. UC SAN DIEGO PERMIT REQUIRED. SURGE PRICING OCCURS DURING POWER EVENTS.

1 HOUR TIME LIMIT

VEHICLES IN VIOLATION ARE SUBJECT TO CITATION AND/OR TOW AT OWNER'S EXPENSE.

CVC 21113(a), CVC 22659, CVC 22651(n)

No permit? Use ParkMobile app, Zone 4752.

Searcher Dir station elotails.

ACTIVE CHARGING ONLY. UC SAN DIEGO PERMIT REQUIRED. SURGE PRICING OCCURS DURING POWER EVENTS.

4 HOURS TIME LIMIT

VEHICLES IN VIOLATION ARE SUBJECT TO CITATION AND/OR TOW AT OWNER'S EXPENSE.

CVC 21113(a), CVC 22659, CVC 22651(n)

No permit? Use ParkMobile app, Zone 4752.

Scan for IV station databa

EV-12

ACTIVE CHARGING ONLY. UC SAN DIEGO PERMIT REQUIRED. SURGE PRICING OCCURS DURING POWER EVENTS.

12 HOURS TIME LIMIT

VEHICLES IN VIOLATION ARE SUBJECT TO CITATION AND/OR TOW AT OWNER'S EXPENSE.

CVC 21113(a), CVC 22659, CVC 22651(n)

No permit? Use ParkMobile app, Zone 4752.

Searcher Dir station details.

Parking features

		Tariff	
	EV -1	EV -4	EV 12
Limit	1 hour	4 hours	12 hours
Ports	1	2	1
Power	50–125 kW	6.6 kW	1.2–6.6 kW
Range	75––185 mi per half hour	21 mi per hour	21 mi per hour
Plugs	CHAdeMO, CCS	J1772	J1772
Energy minimum	None	7 kWh	10 kWh
Flex charging	No	No	Yes

Datasets

SDG&E charging rates

	Price (\$/kWh)								
	Summe	er (Jun-Oct))	Winter (Nov-May)					
Tariff	Super-Off-Peak	Off-peak	On-peak	Super-Off-Peak	Off-peak	On-peak			
EV -TOU	.285	.497	.832	.276	.464	.527			
EV -TOU-2	.285	.497	.832	.276	.464	.527			
EV -TOU-5	.154	.481	.816	.145	.448	.511			

Datasets

Average carbon intensity of the California power grid

	Season							
Time	2022-Q1	2022-Q2	2022-Q3	2022-Q4				
12:01 - 01:00	81.66	82.48	85.43	90.97				
01:01 - 02:00	81.62	80.68	82.43	87.1				
02:01 - 03:00	81.62	80.64	81.82	84.95				
03:01 - 04:00	81.62	80.61	81.59	84.52				
04:01 - 05:00	81.62	81.79	81.47	86.37				
05:01 - 06:00	87.03	90.14	83.5	97.52				
06:01 - 07:00	108.88	88.8	94.67	119.41				
07:01 - 08:00	107.18	28.24	90.9	118				
08:01 - 09:00	63.59	2.28	57.31	97.07				
09:01 - 10:00	29.08	1.68	7.05	38.86				
10:01 - 11:00	0.41	3	12.26	31.13				
11:01 - 12:00	0	47.2	20.61	7.57				
12:01 - 13:00	0	50.24	30.4	9.03				
13:01 - 14:00	0	52.09	42.67	11.27				
14:01 - 15:00	0	55.64	52.49	40.08				
15:01 - 16:00	28.52	60.37	99.35	74.02				
16:01 - 17:00	63.34	26	104.51	123.7				
17:01 - 18:00	105.37	30,.28	129.55	144.16				
18:01 - 19:00	136.85	75.05	141.37	147.13				
19:01 - 20:00	131.9	146.13	148.42	143.16				
20:01 - 21:00	121.95	147.19	140.49	136.57				
21:01 - 22:00	101.6	124.86	119.97	122.34				
22:01 - 23:00	87.84	94.26	102.34	108.95				
23:01 - 24:00	82.13	84.41	91.01	95.2				

Datasets

Avoided emission damages

Experimental schedule

SEPTEMBER MON WED THU SAT 10 11 12 13 14 15 16 21 22 23 18 19 20 Start of Fall Instruction Start of Fall Quarter 29 30 24

NOVEMBER	र						DECEMBER	2					
SUN	MON	TUE	WED	THU	FRI	SAT	SUN	MON	TUE	WED	THU	FRI	SAT
	l								Period 4 (13)	tays: 9 weekday, 4	weekend)	Odometer	
29	30	31	1	2	3	4	3	Discount notification 4 of 4	5	Odometer survey 84	7	End of Fall 8	9
	Period 2 (13)	days: 9 weekday, 4	weekend)			(Finals Week			End of Fall Quarter
Discount					Veterans Day								
2 of 4 5	6	7	8	9		11	10	11	12	13	14	15	16
			Odorreter		Odometer support 63								
12	13	14	Survey as 5	16	reminder	18	1/	18	19	20	21		23
Discount	Period 3 (13	days: 9 weekday, 4	weekend)	Thanks	giving								
notification 3 of 4	20	21	22	Holi	day 	25	24	25	26	27	28	29	30
26	27	28	29	30	1	2							35

Supplementary statistics

A. Demographics							
	(1) Staff	(2) Faculty	(3) Undergraduate	(4) Graduate	(5) Other		
Affiliation	49.13	20.67	17.8	11.45	.95		
	(1) Own House	(2) Rent off-campus	(3) Own condo	(4) Rent house	(5) On-campus	(6) Other	
Living Arrangement	42.61	24.17	10.33	9.7	9.7	9.7	
B. Charging Characteristics							
	(1) Campus	(2) Residence	(3) Other	(4) Neighborhood	(5) Destination	(6) Other Home	
Charging Location (%)	42.58	38.68	7.81	5.24	4.95	.74	
	Night	(2) Morning	(3) Afternoon	(4) Evening			
Charging Time (%)	39.33	26.54	19.33	14.8			
	(1) Low Prices	(2) Activities	(3) Find Charger	(4) Campus	(5) Parking	(6) Fast Charger	(7) Environment
Charging Motivation (%)	35.55	17.21	16.51	11.8	9.52	7.31	2.1
	(1) Close Office	(2) Open Stall	(3) Long Dwell	(4) Short Time	(5) Environment		
On-campus Charging (%)	38.93	30.82	23.82	4.72	1.71		

Participant characteristics and charging behaviors

Parking zones

Network utilization

UCSD EV network operation

Designation share

Network utilization

Balance table

	Inform	nation	Disco	unt 1	Disco	unt 2
	Treated	Control	Large	Small	Large-large	Large-small
A Demographics						
Are	38.58	37.92	38.48	37.79	38.35	38.61
0	(13.33)	(12.43)	(12.65)	(13.34)	(12.36)	(12.36)
	Ì.4	12]) í	4]) í [.c	34]
Share male (%)	0.50	0.57	0.58	0.45	0.55	0.61
	(.5)	(.5)	(.49)	(.5)	(.5)	(.5)
Income (\$ '000)	129.20	122.02	126.60	122 02	127.00	40]
income (3 000)	(66.21)	(66.97)	(66.94)	(66)	(66.45)	(66.45)
	(00.11)	9]	[.2	23	(00.40)	01]
Years of education	17.32	17.04	17.40	16.74	17.47	17.33
	(3.14)	(3.04)	(3.06)	(3.11)	(3.17)	(3.17)
	[1.]	36]	[6.]	34]	[.2	21]
Days on campus per week	3.23	3.29	3.28	3.22	3.28	3.27
	(1.75)	(1.70)	(1.70)	(1.74)	(1.70)	(1.70)
	[·*	loj	[·*	- 3]	t,	u)
B.Vehicle attributes						
Vehicle age (years)	2.40	2.37	2.44	2.27	2.50	2.39
	(2.87)	(2.29)	(2.69)	(2.4)	(2.68)	(2.68)
	[.0	02]	[.6	57]	[.]	15]
Battery electric (%)	0.76	0.77	0.75	0.80	0.79	0.70
	(.43)	21 (.42)	(.44)	(.4) 021	(.41)	35]
Odometer reading ('000 miles)	31.56	30.59	31 77	29.79	32.56	30.93
· · · · · · · · · · · · · · · · · · ·	(31.5)	(27.17)	(28.9)	(30.34)	(27.87)	(27.87)
) (I.1	12]	í.4	16]) í [3	23]
C.Commuting and charging habits						
Daily mileage (miles)	34.27	38.38	30.53 (26.04)	(22.66)	37.74	35.10
	(27.01)	(30.20) 70]	(20.94)	(32.00)	(29.55)	(29.55)
Home charger (%)	0.59	0.58	0.59	0.58	0.59	0.60
	(.49)	(.49)	(.49)	(.5)	(.49)	(.49)
	.[.0	08]) í [.1	13]	.[.0	01] ` ´
Charging price (\$ per kWh)	0.18	0.18	0.18	0.19	0.17	0.19
	(.12)	(.12)	(.12)	(.12)	(.12)	(.12)
	[.3	55	.6	5	1.	/8]
Number of Observation	315	314	418	211	210	208
	Estima	ting e	nuation	15		

Session glitch rate

Charger scarcity experiment

Charger scarcity experiment:

- ▶ [High scarcity]: Starting tomorrow, and for the next two weeks, you will receive an extra discount on campus charging for being a member of the Triton Chargers EV club. During these two weeks, we are making discounts available to you and fellow Triton Chargers.
- ▶ [Low scarcity]: Starting tomorrow, and for the next two weeks, you will receive an extra discount on campus charging for being a member of the Triton Chargers EV club. During these two weeks, you and no more than 33% of Triton Chargers will receive this discount.

Energy consumed by hour of the day - Utilization

Effect of network utilization

Energy consumed by hour of the day - Charger reliability

Effect of charger unreliability

Energy consumed by hour of the day - Scarcity

Experimental incentive structure

A2.Descriptives

Driver characteristics

Energy consumed by hour of the day - Home charger

Driver characteristics

Effect on total charging behavior by utilization

				Total chargi	ing behavior		
	(1) Share	(2) Sessions	(3) Energy	(4) Cost	(5) Duration	(6) Charge Time	(7) Idle Time
A.Informational prompt							
Low Network Utilization	-1.319 (7.955)	229 (.590)	4.571 (9.940)	1.063 (2.833)	-87.606 (183.386)	-2.212 (119.599)	-85.403 (92.013)
Medium Network Utilization	7.224	1.206**	9.158 (10.896)	2.092	111.227 (202.102)	210.312	-99.126
High Network Utilization	-4.173 (7.912)	-1.309** (.603)	-19.919 (12.085)	-5.683* (3.325)	-277.204 (264.719)	-324.391* (172.222)	47.097 (140.101)
B.Financial incentive 1							
Low Network Utilization	-5.215 (7.089)	797** (.404)	3.279 (7.584)	.860 (2.239)	-117.011 (140.612)	-31.206 (87.690)	-85.816 (75.932)
Medium Network Utilization	-5.625 (8.308)	.065 (.394)	6.663 (7.552)	2.025	`-3.249´ (131.433)	86.436 (98.911)	-89.627 (57.523)
High Network Utilization	1.948 (8.695)	241 (.440)	9.697 (9.585)	2.872 (2.752)	195.697 (196.711)	96.351 (136.429)	99.301 (97.569)
C.Financial incentive 2							
Low Network Utilization	-5.561 (6.935)	065 (.471)	1.542 (10.184)	.481	-81.509 (153.182)	-76.659 (112.541)	-4.806 (75.547)
Medium Network Utilization	-2.621	1.207**	3.989	1.595	91.244	148.070	-56.747
High Network Utilization	8.096 (9.103)	.343 (.542)	8.051 (15.814)	2.451 (4.570)	284.576 (271.780)	(202.654 (208.393)	81.981 (104.334)
	. ,						

Charging substitution

Effect on total charging behavior by reliability

			-	Total chargi	ng behavior		
	(1) Share	(2) Sessions	(3) Energy	(4) Cost	(5) Duration	(6) Charge Time	(7) Idle Time
A.Informational prompt							
Low Glitch Rate	-16.232	882	-11.418	-2.953	-347.024	-170.931	-176.073
	(10.445)	(.736)	(13.085)	(3.668)	(251.577)	(172.206)	(126.466)
Medium Glitch Rate	.886	293	-7.865	-2.333	-163.103	-154.478	-8.693
	(5.977)	(.457)	(7.873)	(2.255)	(156.081)	(100.775)	(84.122)
High Glitch Rate	14.316	1.114	27.719*	6.599	399.831	442.235*	-42.438
	(11.025)	(.832)	(16.774)	(4.501)	(294.593)	(230.931)	(116.585)
B.Financial incentive	1						
Low Glitch Rate	-9.222	555	031	.161	-94.038	-2.828	-91.204
	(9.971)	(.474)	(8.555)	(2.516)	(179.482)	(108.936)	(102.898)
Medium Glitch Rate	.069	293	7.658	2.224	31.908	44.220	-12.313
	(6.377)	(.319)	(6.997)	(2.040)	(121.077)	(86.695)	(55.666)
High Glitch Rate	-6.471	527	6.894	1.780	`-3.794´	60.024	-63.812
	(10.552)	(.645)	(11.125)	(3.208)	(200.953)	(160.479)	(80.958)
C.Financial incentive	2						
Low Glitch Rate	-2.927	.891*	3.525	1.112	-58.957	42.950	-101.868
	(9.295)	(.485)	(13.452)	(3.931)	(225.931)	(152.935)	(103.593)
Medium Glitch Rate	1.268 (7.310)	.566 (.465)	6.578 (9.944)	2.221 (2.909)	119.085 (164.604)	106.236 (127.049)	12.869 (68.893)
High Glitch Rate	-7.943	612	-1.804	433	-34.588	-86.109	51.679
	(10.853)	(.528)	(11.243)	(3.298)	(215.403)	(145.771)	(116.189)

Charging substitution

Effect on total charging behavior by commute frequency

		Total charging behavior								
	(1) Share	(2) Sessions	(3) Energy	(4) Cost	(5) Duration	(6) Charge Time	(7) Idle Time			
A.Informational prompt										
Infrequent Commute	-5.847	.021	-5.316	-1.459	-180.663	-76.156	-104.519**			
	(6.256)	(.362)	(6.834)	(1.892)	(121.883)	(85.478)	(52.442)			
Frequent Commute	2.679	013	.367	172	16.773	8.397	8.345			
	(4.778)	(.339)	(6.637)	(1.840)	(125.149)	(84.545)	(60.067)			
B.Financial incentive 1	L									
Infrequent Commute	-1.536	147	-2.875	916	-94.435	-55.247	-39.174			
	(6.032)	(.247)	(5.234)	(1.513)	(87.589)	(64.274)	(35.244)			
Frequent Commute	-1.899	.016	9.624*	2.826*	119.536	109.884	9.649			
	(5.499)	(.251)	(5.112)	(1.494)	(90.478)	(67.347)	(37.833)			
C.Financial incentive 2	2									
Infrequent Commute	-16.281**	061	-7.989	-2.378	-43.946	-77.764	33.823			
	(6.684)	(.326)	(6.310)	(1.880)	(101.390)	(74.869)	(42.588)			
Frequent Commute	6.269	.494	11.495	3.438	153.660	130.831	22.877			
	(6.168)	(.307)	(7.787)	(2.279)	(124.054)	(92.348)	(52.162)			
			Charging su	hetitution						

Effect on total charging behavior by location

	Total charging behavior								
	(1) Sessions	(2) Energy	(3) Cost	(4) Duration	(5) Charge Time	(6) Idle Time			
A.Informational pro	ompt								
SIO	033	404	269	9 006	9 185	- 180			
	(.069)	(.841)	(.428)	(18.334)	(15.356)	(3.659)			
West Campus	.101	.146	290	18.412	32,588	-14.177			
	(.224)	(4.257)	(1.934)	(119,942)	(87,748)	(50.258)			
East Campus	003	-1.445	-1.176	-116.159	-90.511	-25.648			
	(.151)	(3.622)	(1.847)	(145.214)	(92.523)	(69.111)			
Graduate Housing	121	-1.600	922	-76.622	-32.538	-44.085			
	(.101)	(2.390)	(1.360)	(74.342)	(48.680)	(30.843)			
B.Financial incention	ve 1								
SIO	- 142**	-2 246**	-1 152*	-46 530*	-37 130*	-9 400			
	(069)	(1.081)	(664)	(27 121)	(22 448)	(6.232)			
West Campus	- 043	2 083	378	-73 509	-27 367	-46 141			
	(171)	(3.148)	(1.734)	(110.968)	(80.432)	(49.228)			
East Campus	.125	4.167*	1.910	75.593	82.619	-7.026			
	(084)	(2 252)	(1.390)	(95.253)	(65.957)	(42 431)			
Graduate Housing	046	.128	.010	-16.046	-8.585	-7.462			
0	(.082)	(2.088)	(1.366)	(61.909)	(47.246)	(23.170)			
C.Financial incentiv	/e 2								
SIO	016	217	017	1.032	383	649			
	(.026)	(.493)	(.300)	(12,238)	(10.143)	(3.701)			
West Campus	.038	561	-1.262	-102.791	-47.679	-55.113			
	(.223)	(3.545)	(1.893)	(111.924)	(75.846)	(56.258)			
East Campus	.065	1.903	.314	-9.775	22.534	-32.309			
	(.108)	(2.967)	(1.581)	(122,744)	(81.660)	(57.001)			
Graduate Housing	.144	3.996	1.627	76.625	44.860	31.764*			
	(.088)	(3.361)	(1.629)	(64.308)	(54.802)	(18.853)			

Effect of network utilization

Effect on total charging behavior by operator

		Timing of initiated charging session									
	(1) 21-5	(2) 5-7	(3) 7-10	(4) 10-16	(5) 16-21						
A.Informational	prompt										
PowerFlex	018 (.015)	051 (.055)	.151	.045	.035						
ChargePoint	030 (.043)	073 (.064)	.052 (.121)	094 (.130)	018 (.078)						
B.Financial ince	ntive 1										
PowerFlex	001 (013)	.036 (036)	023 (092)	.008	.003						
ChargePoint	.062** (.028)	.028 (.036)	053 (.101)	051 (.088)	049 (.059)						
C.Financial incentive 2											
PowerFlex	.008 (.010)	052 (.062)	.055 (.091)	.023 (.030)	.036 (.032)						
ChargePoint	.032 (.061)	009 (.054)	057 (.112)	.171 (.125)	.169*						

Effect of charger unreliability

Garg, Hanna, Myers, Tebbe & Victor (UCSD)

Effect on total charging behavior by home charging access

	Total charging behavior						
	(1) Share	(2) Sessions	(3) Energy	(4) Cost	(5) Duration	(6) Charge Time	(7) Idle Time
A.Informational prompt							
Home Charger	1.956	198	-7.118	-2.275	-107.906	-51.950	-55.960
	(4.667)	(.341)	(6.800)	(1.871)	(133.845)	(84.035)	(69.192)
No Home Charger	-4.151	.295	7.092	1.968	45.146	31.091	13.999
	(7.721)	(.464)	(8.830)	(2.468)	(154.945)	(118.734)	(58.587)
B.Financial incentive 1							
Home Charger	399	007	6.250	1.752	9.996	49.083	-39.090
	(5.054)	(.236)	(4.666)	(1.353)	(88.086)	(57.728)	(43.799)
No Home Charger	-4.091	084	4.095	1.260	96.917	59.406	37.520
	(7.585)	(.361)	(6.702)	(1.946)	(114.641)	(88.730)	(42.706)
C.Financial incentive 2							
Home Charger	834	.145	4.448	1.444	47.175	51.465	-4.263
	(5.885)	(.272)	(7.303)	(2.136)	(112.531)	(80.926)	(48.251)
No Home Charger	-2.224	`.558 [´]	6.118	1.671	`150.305 [´]	`78.997 [´]	`71.353 [´]
	(8.828)	(.420)	(8.121)	(2.386)	(138.505)	(106.828)	(57.916)
Driver characteristics							