
Electric Vehicle Charging at the Workplace:
Experimental Evidence on Incentives and

Environmental Nudges

Teevrat Garg Ryan Hanna Jeffrey Myers
Sebastian Tebbe David G. Victor∗

March 23, 2024

Abstract

To minimize the environmental impact of electric vehicles (EVs) and support decar-
bonizing electric grids, drivers must charge their EVs when renewable energy genera-
tion is abundant. To induce a shift in charging behavior toward daytime hours with
abundant solar energy, we conducted a field experiment (n = 629) at a large university
campus to measure the influence of informational and financial incentives on the usage
and timing of workplace charging. While neither intervention affected total charging,
they induced opposite temporal shifts. Receiving information about the climate benefits
of daytime charging induced a transition from early to later morning charging, whereas
receiving larger financial incentives to charge on campus prompted a shift from day-
time to overnight and early morning charging. We identify the quality of the charging
network, incentive-induced scarcity concerns, and driver demographics as mechanisms
behind the temporal shifts in charging.

∗Garg: School of Global Policy and Strategy, University of California San Diego (teevrat@ucsd.edu);
Hanna: Center for Energy Research, University of California San Diego (rehanna@ucsd.edu); Myers: School
of Global Policy and Strategy, University of California San Diego (jmyers@ucsd.edu). Tebbe: School of
Global Policy and Strategy, University of California San Diego (ytebbe@ucsd.edu); Victor: School of Global
Policy and Strategy, University of California San Diego (david.victor@ucsd.edu). We want to thank Nicolas
Astier, Josh Kavanagh, Byron Washom, Jan Kleissl, and Wente Zeng for helpful comments and suggestions;
Emily Carlton and Jarrett Valdez for support with creating UCSD’s EV charging club; Taylor Kempf, Yi-An
Chen, and Avik Ghosh for data support; and Cypress Hansen for graphics. Funding for this research was
provided by the National Science Foundation, TotalEnergies, and the Electric Power Research Institute, a
nonprofit R&D organization focused on the electric power sector.



I Introduction

Every credible plan for deep reductions in greenhouse gas emissions that cause climate change
involves the widespread electrification of light-duty transportation (International Energy
Agency, 2021). Currently, electric vehicles (EVs) make up 7–24% of passenger vehicle sales
in the three largest markets, China, the E.U., and the U.S., and these jurisdictions have set
ambitious targets of 50-100% sales by 2030–2035 (European Environment Agency, 2021; Of-
fice of the Press Secretary, 2021; Executive Department State of California, 2020). Alongside
the transition to EVs, most strategies for deep decarbonization anticipate a rapid uptake of
renewable energy in the power sector (International Energy Agency, 2021), given that the
carbon footprint associated with EV charging is contingent upon the carbon intensity of the
power grid. The efficacy of these strategies hinges on the charging behavior of drivers, as
charging directly affects both the power grid, which must accommodate increased demand,
and emissions, given the fluctuating marginal emissions of renewable grids throughout the
day. In solar-dominant grids, that variation puts a premium on midday charging when most
people are at work.

Although most charging today is done at home — enabled because early EV adopters
tend to be wealthier and have higher rates of homeownership (LaMonaca & Ryan, 2022) —
workplace charging remains crucially important for two reasons. First, it is expected that
future EV owners will have less access to private home charging and hence require alter-
native charging options. Second, as the electric grid moves toward renewable energy, the
value of storage and flexible load options (like EV charging) will grow alongside the need
to balance fluctuations in energy supply and demand. With many institutions, including
corporations, public entities, and universities, committing to net-zero carbon goals and sup-
porting their employees with workplace charging facilities, the extent to which EVs support
deep decarbonization will depend on how drivers interact with workplace EV networks and
how workplace policies influence their charging decisions.

In this paper, we run a series of interventions aimed at increasing workplace daytime
charging and thereby reducing CO2 emissions associated with charging. Drivers have various
charging options (at campus, in public, or at home, if available) and charging habits that
may be ingrained or flexible. We conducted a field experiment (n = 629) at the University
of California San Diego (UCSD) campus — host to one of the world’s largest workplace
EV charging networks — to study how interventions shape drivers’ decisions to use campus
charging (i.e., to shift from off-campus to campus charging) and to alter when they charge.
Our research, the first to measure the influence of interventions on workplace charging be-
havior, revolves around a newly established EV charging club for UCSD affiliates, which we

1



created to collect data on drivers’ demographics, vehicles, commuting and charging habits,
and campus charge sessions.

Our experiment investigates how informational nudges and financial incentives can in-
duce a shift in where and when drivers’ charge. First, we provide drivers with information
about the CO2 emission benefits associated with daytime versus nighttime charging. Sec-
ond, we give drivers discounts on campus charging irrespective of time. In the first phase of
this financial treatment, participants receive either a small ($.16/kWh) or large ($.23/kWh)
discount on the base campus rate of $.30/kWh, such that campus charging is at least slightly
cheaper than overnight home charging and equal to the average locational marginal price of
electricity, respectively.1 In the second phase of financial treatment, we retain half of the
drivers on the large discount while moving the other half to the small discount to investigate
habit formation for campus charging.

The environmental nudges about the climate benefits of daytime charging and campus
charging discounts did not significantly increase total campus charging. We measure each
individual’s total campus charging via seven outcomes: the share of charging done on cam-
pus, the number of charging sessions, energy consumption, session cost, session duration,
charge duration, and idle duration. These results imply that informational prompts and fi-
nancial discounts did not induce a short-term shift to campus charging, suggesting that other
strategies may be necessary to induce significant changes in charging behavior, particularly
a shift in charging from home to the workplace. Our interventions led to a redistribution
of charging sessions among commuter groups, particularly shifting sessions from high- to
low-utilization garages, suggesting that informational nudges may have a more significant
impact on workplace charging facilities characterized by lower congestion.

Although our interventions did not influence total campus charging, they led to signifi-
cant shifts in the timing of campus charging sessions. We consider the timing, i.e., when a
driver plugs in to charge, across five distinct windows: early morning (5–7), morning (7–10),
midday (10–16), evening (16–21), and overnight (21–5). Receiving informational prompts
about the climate benefits of daytime charging was associated with a 67% reduction in early
morning charging and a shift to later morning charging, suggesting an intertemporal substi-
tution toward daytime hours with higher renewable energy generation. Conversely, discounts
on campus charging led to a 103% increase in overnight charging and a 61% increase in early
morning charging, while charging decreased during the rest of the day. This indicates an
intertemporal substitution in the opposite direction, away from midday solar energy gen-
eration, a perverse effect in which financial incentives for charging increase CO2 emissions.

1The lowest-cost residential utility rate is $.145/kWh, and the mean locational marginal electricity price
for UCSD in October 2022 was $.07/kWh.
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Given an average of .89 weekly campus charging sessions per driver, incentives shifted the
timing of 15–26% of all charging sessions.

Additionally, the second phase of the financial discount resulted in an 88% increase
in evening sessions but less of a shift to early morning charging. The shift to evening
charging may indicate that commuters adapted their routines to charge during periods with
lower network utilization, i.e. to periods when a greater number of chargers are reliably
available. The reduced shift to early morning may reflect less competition for chargers
later in the morning, since fewer participants receive a large discount during the second
financial discount (one-third of participants moved from the large discount to small). The
interventions prompted a slight increase in charging by commuters experiencing low glitch
rates during the second financial discount, indicating that financial incentives have stronger
effects at workplace charging facilities characterized with greater reliability.

Next, we analyze the mechanisms driving temporal shifts in campus charging, focus-
ing on three key factors: the quality of campus charging infrastructure, the experimental
incentive structure, and driver characteristics. Understanding these mechanisms is crucial
for institutions and policymakers to predict charging behavior changes and effectively tar-
get interventions. Specifically, the temporal shifts during the financial discount stem from
drivers who charge predominantly in garages with high utilization and charger reliability (i.e.,
low rates of sessions that fail to initiate), suggesting that financial incentives have stronger
temporal effects when drivers perceive charging facilities to be available and reliable.2

In addition to network infrastructure quality, financial discounts may affect commuters’
perceptions of charger availability. Within congested networks, discounts may instill the
belief that drivers need to shift to periods when campus chargers are unoccupied to secure
an available charger and the discounts. In a follow-up financial intervention that primes
perceptions of discount scarcity, we find that incentive-induced scarcity resulted in shifts
to overnight charging sessions, highlighting that perceptions of scarcity alone shift charging
behavior toward periods of lower utilization.

We evaluate what characteristics of drivers influence the timing of charging behavior as
a response to the interventions. Greater commuting flexibility allows drivers to adjust their
charging schedules in response to incentives, as evidenced by frequent commuters shifting to
evening and overnight sessions during discount periods. Additionally, access to private home
charging and low-cost overnight rates influences charging behavior, with drivers without

2This is consistent with literature that identifies charger scarcity as a central impediment to widespread
EV adoption (Tal et al., 2014; Bornioli et al., 2023). Network congestion — i.e., when the number of EV
drivers who wish to charge exceed available chargers — has been shown to influence driver behavior (Helmus
et al., 2020). Some experiments have studied ways to reduce workplace charger scarcity by encouraging
drivers to move their EV when done charging (Asensio et al., 2021; Bornioli et al., 2023).
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home chargers or facing high charging prices at their usual location significantly shift to
evening and overnight sessions in response to financial incentives.

In addition, we calculate the annual welfare effects per driver of each intervention. From
the institution’s perspective, annual welfare is the sum of avoided CO2 emission damages,
revenues from participation in local low-carbon fuel markets (California’s Low Carbon Fuel
Standard, or LCFS), and the cost of implementing the policy intervention. Using our experi-
mental findings on the timing of campus charging sessions, informational treatment yields an
annual net welfare benefit per driver of $22.12 because charging shifts to midday when the
grid has the lowest carbon intensity. In contrast, the first and second financial treatments
reduce welfare by $18 and $4.97 (excluding the intervention costs) because charging shifts to
early morning and evening hours, respectively, with higher grid carbon intensity. Finally, we
highlight strong regressive patterns in the take-up of financial discounts for charging sessions,
with benefits distributed unevenly across income groups.3

The literature on EV charging behavior has evolved along three dimensions: where
and when drivers choose to charge their vehicles, why they make these choices, and how
interventions can shape these decisions. Studies consistently show that the majority of
charging occurs overnight (Helmus et al., 2020) at home (Lee et al., 2020) by EV drivers who
tend to be wealthier and have higher rates of homeownership (Davis, 2019). Consequently,
nearly all experimental work has sought to explain home charging behavior. With growing
recognition that workplace charging will play a crucial role in fostering EV adoption (Dorsey
et al., 2022) and in meeting the growing demand for charging (Tal et al., 2020), and as the
profile of EV buyers shifts to adopters who are less wealthy and less likely to own a home,
researchers must build analogous experimental literature around workplace charging.

We make three main contributions to the literature on workplace EV charging. First,
we demonstrate how researchers can build an experimental basis for workplace EV research.
We created an EV charging club for UCSD faculty, staff, and students whom we can enlist to
study frontier research questions relevant to the workplace. The club provides financial and
informational benefits to drivers in return for responding to periodic surveys that generate
a rich set of data on driver, vehicle, charging, and commuting characteristics. We supple-
ment this with charge session data, allowing us to analyze driver behavior in response to
interventions.

Second, our work is the first to empirically examine the effect of interventions on the
timing of workplace charging sessions, and complements the literature on temporal shifts

3This relates to literature on the distributional impacts of environmental policies, including gasoline
taxes (Poterba, 1991; Bento et al., 2009), carbon taxes (Cronin et al., 2019), fuel economy standards (Davis
& Knittel, 2019), building codes (Bruegge et al., 2019), utility rates (Borenstein, 2012; Borenstein et al.,
2021), solar panel subsidies (Borenstein, 2017; Feger et al., 2022), and heat pump adoption (Davis, 2023).
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in home charging (Bailey et al., 2023). We build on a rich literature of home and public
charging experiments that suggests price-based and informational interventions can shape
drivers’ charging decisions. These include various pricing strategies (Motoaki & Shirk, 2017;
Davis & Bradley, 2012; Langbroek et al., 2017; Kacperski et al., 2022), revenue opportuni-
ties (Lagomarsino et al., 2022), prizes and auctions (Fetene et al., 2017), financial penalties
(Asensio et al., 2021), and financial discounts (Bailey et al., 2023). Informational interven-
tions have also proven effective, including information on estimated cost savings (Nicolson
et al., 2017), on charging sourced from renewable energy (Nienhueser & Qiu, 2016), and
tailored at the point of charge (Asensio et al., 2021). While much research has focused on
the technical potentials for automated load management (ALM) to optimize workplace EV
networks (McClone et al., 2023), algorithmic solutions require that drivers first behave in
preferred ways (i.e., plug-in at preferred times).

Third, our empirical findings can inform charging policy strategies intended to align
charging with sustainability objectives. Institutions have implemented numerous practices
and policies aimed at “managing” (i.e., improving the efficiency of) workplace EV networks
— e.g., numerous fixed and volumetric pricing structures; digital queuing; time limits with
pricing; valet services; day- and time-based restrictions; and public messaging systems (Sut-
ton et al., 2022). Others include rewards, social charging apps, and policies on unplugging
(Wolbertus & van den Hoed, 2017). However, research has found that these policies can
inhibit workplace charging as much as they encourage it (Caperello et al., 2013; Bonges III
& Lusk, 2016), e.g., by causing rather than alleviating congestion (Nicholas & Tal, 2015).
As noted by Sutton et al. (2022), there is little evidentiary basis for how these policies affect
driver charging decisions and the efficiency of the workplace network.

The rest of the paper proceeds as follows. Section II presents the experimental design
and summarizes data. Section III provides the empirical methodology and experimental
findings. Section IV discusses the welfare effects of the experiment. Section V concludes
with policy implications.

II Experiment

The experimental setting assesses two interventions to promote daytime workplace charging:
informational nudges and financial discounts. Specifically, we analyze whether information
about the climate benefits of daytime charging and financial discounts for workplace charg-
ing influence where and when people charge. In addition, we examine the mechanisms,
persistence, and interaction of these two treatments.

We conducted the field experiment at UCSD, which operates one of the world’s largest
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EV charging networks. We coordinate closely with campus administrators (UCSD’s Trans-
portation Services) responsible for campus charging policy and pricing as well as two leading
charging vendors, ChargePoint and PowerFlex, who collect and share charge session data.
To recruit research participants, we created a campus club for EV drivers — the “Triton
Chargers”4 — open to UCSD affiliates (students, staff, and faculty), in which drivers opt-in,
consent to research, and receive discounts for charging on campus and opportunities to win
raffle prizes (monthly $50 gift cards for being a member and larger quarterly gift cards for re-
sponding to surveys).5 Appendix A.1 describes EV drivers at the UCSD campus. In return,
members respond to recurring surveys that inquire about demographic information, their
EV, commuting and driving, charging habits, motivations, and unique vendor identification
numbers, allowing us to access individuals’ campus charging activity and analyze potential
behavioral shifts in response to interventions.

II.A Design of informational and financial interventions

The experiment consists of two interventions run in series — an informational treatment
run over 18 days from October 4–23, followed by two phases of financial treatment run over
26 days from October 24 to November 19 (Figure I). Interventions were conducted within a
single academic quarter to maintain consistency in campus population and schedules, and
to ensure equal duration among the two financial treatments.

In the informational intervention, half of the study participants were randomly assigned
to treatment and half to control. Treatment consists of an email, delivered three times (once
per week), stating the climate benefits of daytime charging compared to nighttime charging.
In each email, benefits are reported as avoided CO2 emissions, equivalent unburned gasoline,
and prevented global environmental damages. Appendix A.3 reports the email message and
calculations for these quantities.

In the financial intervention, drivers were given discounts for all Level-2 charging and
randomly placed into treatment arms that varied discount size.6 The financial intervention
consists of two phases.7 During the first phase (October 24 to November 5; 13 days), roughly

4See https://deepdecarbon.ucsd.edu/triton-chargers.
5The Triton Chargers and associated experimental social science research at UCSD are part of a broader

research testbed for distributed energy, called “DERConnect”, that is open to outside researchers.
6The vast majority of UCSD chargers are Level-2. Participants report rarely using the small number of

DC Fast chargers on campus and we exlude these from this study.
7One drawback to our design is that we do not have direct access to the prices charged by (or shown at)

charging stations. Drivers pay the full price of their charging session and receive the discount incentive as a
rebate at the end of the study period. If drivers disregard or forget our communications about incentives,
they may be unaware of the incentive throughout the experiment. This may bias our estimates toward zero,
but it represents potential real-world scenarios and follows previous research (Burkhardt et al., 2019)
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one-third of participants receive a small discount ($.16/kWh) and two-thirds receive a large
discount ($.23/kWh) — equivalent to 50% and 75% off the base campus rate of $.30/kWh,
respectively. We set discounts so that the effective small-discount rate of $.14/kWh corre-
sponds to the cheapest overnight home charging rate of the local electric utility, San Diego
Gas & Electric (SDG&E; $.145/kWh from midnight to 6 am during winter months) — thus
negating the economic advantage of overnight home charging. While SDG&E’s residential
rates vary by time of day (Figure B3), campus rates and discounts apply equally to all hours
of the day. The large-discount rate of $.07/kWh is equivalent to the locational marginal
price of wholesale electricity, corresponding to the plausible lowest cost that drivers would
pay for charging. Appendix A.4 summarizes the prompts for the financial discounts.

During the second phase (November 6–19; 13 days), half of the large discount group
continues with the large discount, while the other half moves to the small discount. The
second financial intervention thus has three treatment arms—LL (Large-Large), LS (Large-
Small), and SS (Small-small) discounts—given to three distinct groups. In this phase, we
test for the presence of habit formation when financial discounts are reduced. If the charging
behavior of participants on reduced discounts (LS) closely mirrors those who continue to
receive the large discount (LL), our results are consistent with habit formation. In contrast, if
the charging behavior of participants on reduced discounts (LS) reverts to those receiving the
small-small sequence of discounts (SS), our results indicate the absence of habit formation.

Appendix A.2 summarizes the full experimental schedule. All randomization is done
via stratified block randomization based on drivers’ commuting frequency (at least three
times per week), preferred charging location (at or away from the home residence), and
environmental motivations for choosing a charging location (high or low).
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Figure I: Experimental design

Notes: This figure shows participant assignment to treatment and control groups over the three phases
of our experiment: informational (Oct 4-23), first financial (Oct 24-Nov 5), and second financial (Nov 6-19).
Figure A1 documents the full experimental schedule. Appendix A provides all details on the experimental
design.

II.B Key datasets

1. Charging network data. The UCSD charging network includes 331 Level-2 chargers,
including 250 ChargePoint and 72 PowerFlex chargers.8 Campus rules permit 4 hours of
charging at ChargePoint stations and 12 hours at PowerFlex. Stations record session data,
including total session duration (marked by plug-in and plug-out times), charging duration,
idle duration (time plugged in but not charging), and energy consumed.9 They also record
the unique (anonymized) ID of the driver who initiated the session, allowing us to link drivers
to charging sessions. We exclude sessions that indicate an initiation error (i.e., that consume
less than .5 kWh or last fewer than 5 minutes) or flout campus parking rules (i.e., exceed 16

8UCSD plans to install an additional 760 Level-2 and 35 DC Fast Chargers by the end of 2025.
9Some sessions in our dataset are fragmented, potentially due to software resets, driver actions such as

unplugging and replugging, or data collection errors. We merge these session fragments and treat them as
single charging events if the temporal gap between consecutive sessions is five minutes or less for a singular
driver at a specific port.
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hours; the maximum allowable duration is 12 hours, but we include a small subset lasting 12
to 16 hours). Appendix B.1 provides information on chargers and parking rules at UCSD.

2. Driver data. Upon enrolling in the Triton Chargers EV club, drivers provide infor-
mation on their demographics (age, gender, income, and education), university affiliation,
vehicle (year, make, model, type), living arrangement (rent or own, dwelling type), charging
behaviors (access to charging alternatives, fraction of charging done by location), commut-
ing behavior (commute frequency and distance, obtained via zip code),10, and motivation
for choosing campus charging locations (Table I, A–C). In addition, we periodically request
odometer readings to track total driving before, during, and after interventions. Appendix
A.5 and A.6 document the odometer and enrollment surveys.

3. Other data. In addition to campus charging, drivers can charge at home at rates set
by the local utility (SDG&E) or at public destinations (e.g., malls, plazas) at rates set by the
commercial operator. SDG&E public charging rates are tied to, but significantly higher than,
the locational marginal price of electricity. Appendix B.2 summarizes SDG&E residential
charging rates and wholesale electricity prices during the study period. To calculate the
climate impacts of EV charging, which depends on the carbon intensity of electricity, we use
emission factors published by the California Air Resources Board (Table B4).

II.C Descriptive statistics

Table I summarizes participants’ demographics (Panel A), vehicle attributes (Panel B), and
commuting and charging habits (Panel C), along with the outcome variables that reflect
charging behavior (Panel D). Per self-reported survey responses, the average participant is
38 years old, has 17 years of education (equivalent to a Bachelor’s degree), an annual income
of $136 thousand, and makes 3.3 weekly commutes to campus. Panel A of Table C1 shows
that participants are mostly staff (49%), faculty (21%), and undergraduate students (18%),
who either own a single-family house owners (43%) or rent off-campus.11 The average EV is
2.4 years old and has been driven 29,153 miles; 76% of EVs in our study are battery-electric.
The mean daily driving mileage is 40 miles, and the mean one-way commute distance is 14
miles. 59% of participants report having a home charger. Drivers report paying, on average,
$.18/kWh.12

10We calculate the commute distance as the road network distance between the centroid of the driver’s
self-reported zip code and UCSD campus.

1110% of our sample reports owning condos, bringing total homeownership to 54%, almost exactly that of
the San Diego population. For our purposes, however, condo ownership and single-family house ownership
are distinct because the latter have local control over decisions about installing home charging while condo
owners may not.

12190 participants (30% of the sample) report not knowing the price they typically pay to charge.
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Per vendor session data, drivers initiated .89 weekly charging sessions on the UCSD
campus during the experiment. The average session, charging, and idle durations were 312,
228, and 84 minutes, respectively. The average energy consumed was 19 kWh; the average
cost was $5.54. Participants did 30% of their charging on campus (on an energy basis).

Moreover, Panel B of Table C1 displays charging behavior patterns based on location,
time of day, reasons for charging, and motivation to charge on campus. Drivers report that
they charge mostly on campus (43%) or at home (39%) while also utilizing other locations
such as charging plazas (5%) and destination charging (5%). Drivers report doing 39% of
charging overnight and 19% during solar peak afternoon hours of 12-16. Drivers generally
report price as the key factor in choosing a charging location. When on campus, where prices
are the same everywhere, they report choosing charging locations nearest their office (39%)
or where they think they are most likely to find an open charger (31%).

III Empirical results

III.A Methodology

To estimate the effect of the information and financial treatment on campus charging be-
havior, we run the following regression (1):

yi = βInfoi + δReward1i + η(Infoi·Reward1i) + γXi + αj + ηt + εi, (1)

where i indexes the driver; yi refers to the charging outcome variable of interest; Infoi

and Reward1i are dummy variables equal to 1 if the individual received the informational
prompts and large discount in the first financial treatment, and equal to 0 otherwise; the
vector Xi represents a rich set of individual socio-demographic variables, vehicle charac-
teristics, charging attributes, and motivation about charging;13 ηt is a dummy variable for
UCSD’s “Clean Air Day” (Wednesday, October 4), a promotional event with 50% discounts
on campus charging;14 and αj are vehicle fixed effects to control for time-invariant vehicle
characteristics. The coefficients of interest β and δ measure the effect of the information and
financial treatment on the outcome of interest. The coefficient η measures the interaction

13Control variables include age, gender, income, years of education, weekly days commuting to campus,
vehicle age, vehicle type, odometer reading, an indicator for home charger, charging price, and being a
charging club member. In addition, we include a dummy for the preferred charging location, usual charging
time, motivations for charging location, and motivations when choosing where to charge on campus. As some
respondents did not state their income and charging price, we use the average as a proxy for this variable.

14The Clean Air Day discounts only moderately increased the total charging activity of the Triton Chargers
EV club (Figure A3), but it resulted in substitution to earlier charging (Figure A4).

10



Table I: Participant characteristics and charging behaviors

Mean Std. dev. Min Max Obs.

A.Demographics
Age 38.25 12.88 22 80 629
Share male (%) 0.53 0.50 0 1 629
Income ($ ’000) 135.73 66.58 25 200 557
Years of education 17.18 3.09 11 21 629
Days on campus per week 3.26 1.75 0 6 629

B.Vehicle attributes
Vehicle age (years) 2.38 2.59 0 22 629
Battery electric (%) 0.76 0.43 0 1 629
Odometer reading (miles) 29153.09 28770.26 28 205,069 422

C.Commuting and charging habits
Daily mileage (miles) 39.95 40.83 0 491 318
Home charger (%) 0.59 0.49 0 1 629
Charging price ($ per kWh) 0.18 0.12 0 1 382

D.Outcome variables
Share of charging on campus 30.70 34.60 0 100 313
Weekly charging sessions 0.89 1.21 0 9 629
Energy consumed (kWh) 18.72 12.32 1 67 401
Session costs ($) 5.35 3.53 0 18 401
Session duration (min) 312.33 170.62 23 792 401
Charging duration (min) 228.53 136.92 21 749 401
Idle duration (min) 83.79 102.51 0 614 401

Notes: This table reports descriptive statistics on driver demographics (Panel A), vehicle
attributes (Panel B), commuting and charging habits (Panel C), and outcome variables of
interest (Panel D) for experiment participants. Driver data (Panel A-C) are from the Triton
Chargers EV club enrollment survey prior to the experiment; the outcome variables (Panel
D), which characterize charging behavior, include all charging sessions between the first infor-
mational prompt (October 4) and the conclusion of the financial treatment (November 19).
We report averages for age, income, and education, while our survey data asked respondents
to select the appropriate bracket for each.
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effect between information and financial treatment. For the second phase of the financial
experiment, which estimates habit formation, we consider an analogous specification to that
in equation (1), but we replace the Rewardi dummy with an indicator variable Reward2i

denoting 1 if an individual is in the large discount group in the second phase. In addition,
we control for the first financial discount, Reward1i, in the second phase. Standard errors
are clustered at the individual-level.

We use the model specification in (1) to analyze total charging activity and the timing
of charging. To measure changes in total charging, we analyze seven outcome variables:
each driver’s share of charging done on campus, the number of sessions initiated, energy
consumed, session cost, session duration, charging duration, and idle duration (Panel D,
Table I). A driver’s share of charging on campus is the total energy consumed from campus
charging divided by the expected energy consumed from total driving, which we estimate
from data on the driver’s daily vehicle miles driven obtained through recurring odometer
readings and their vehicle’s energy efficiency.15

To measure the effect of interventions on the timing of charging (i.e., the hour in which
sessions are initiated), we analyze charging over five distinct periods: overnight (21:00–4:59),
characterized by low network utilization; early morning (5:00–6:59), which sees the earliest
morning commuters and has low utilization; morning (7:00–9:59), characterized by the arrival
of most regular commuters and a rapid surge, to near maximal levels of network utilization;
midday (10:00–15:59), characterized by relatively constant high utilization and maximal
solar generation; and evening (16:00–20:59), characterized by departing commuters, arrival
of nighttime workers, and rapidly waning solar generation. Californians are incentivized
through time-of-use pricing to avoid energy use during especially the evening period.

1. Balance. Table C2 provides balance tests to assess the quality of our three random-
izations. Specifically, we compare mean values for demographics, vehicle attributes, and
commuting and charging habits across treated and control groups of the informational, the
first and second financial interventions. Using a one-way ANOVA test, the table shows that
the randomization achieved balance across most observed covariates.

III.B Main findings

This section reports empirical results on total charging behavior and the timing of charging
during the informational and financial treatments.

15We assume participants with plug-in hybrids drive on electricity only for a subset of total miles, with
longer electric-only ranges corresponding to lower reliance on gasoline (Isenstadt et al., 2022).
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1. Effect on total charging behavior Figure II shows daily total charging activity for
six measures of campus charging: the number of charging sessions (Panel A); total energy
consumed, in kWh (Panel B); (pre-rebate) session cost, in U.S. dollars16 (Panel C); session
duration, in hours (Panel D); charging duration (Panel E); and idle duration (Panel F)
across the two interventions for the treatment and control groups. The informational and
first financial intervention each consist of a single treatment and control group; the second
financial intervention has three treatment arms consisting of large-large (LL), large-small
(LS), and small-small (SS) combinations of discounts during the first and second financial
discount, respectively. Across all measures, the raw session data show no striking difference
between these groups. Although there is a slight increase in total energy consumed and
charging duration among treated individuals on day 3 of the informational intervention, we
do not observe any evident shifts in individuals’ total charging behavior.

Table II provides the regression estimates for the informational treatment (Panel A),
two financial treatments (Panel B–C), and interaction effects between information and the
first large discount (Panel D). Neither the informational nor the first financial treatment
significantly affected any of the seven measures of total charging behavior. These results
suggest that these incentives neither encouraged additional drivers to charge on campus
(i.e., switch from off-campus to campus charging) nor motivated existing drivers to charge
more frequently. First, this suggests that total workplace charging behavior is not impacted
by the environmental appeal of daytime charging, consistent with results from a similar,
smaller trial experiment in June 2023 (Appendix A.8).17 Second, financial discounts for
workplace charging do not change individuals’ total charging activity.18 This is consistent
with the lack of a significant increase in charging sessions and energy on the Clean Air Day
(Appendix A.7).19 These results hold for both charger vendors (Table D2).

In contrast, the second financial discount (in which half of the large discount group con-
tinues with the large discount) results in an increase of .434 (25%) in the number of campus
charging sessions. In addition, the second financial discount induces longer charging and idle

16We use the term “session cost” to refer to the cost of a charging session before any charging discounts
are applied.

17One possible explanation for the non-existing treatment effect is information spillover, i.e. that infor-
mation about climate benefits diffused from treated to non-treated participants. However, spillover effects
are unlikely to explain our results since there is no significant increase in workplace charging immediately
after the experiment.

18Related to the literature on rebound effects in the context of fuel efficiency (Chan & Gillingham, 2015;
Gillingham et al., 2020), the discounted charging could plausibly have led to an increase in driving. However,
we find no evidence that drivers increased their mileage, charging frequency, or campus energy consumption
in response to the financial incentive.

19During the first three weeks of October, Figure A3 indicates a non-significant 10% increase in total
energy consumed on Clean Air Day compared to other Wednesdays.

13



0
10
20
30

Se
ss

io
ns

Information Discount 1 Discount 2

0 5 10 15 20 25 30 35 40 45
0

10
20
30

En
er

gy

Information Discount 1 Discount 2

0 5 10 15 20 25 30 35 40 45

0
3
6
9

Se
ss

io
n 

co
st

Information Discount 1 Discount 2

0 5 10 15 20 25 30 35 40 45
0
2
4
6
8

Se
ss

io
n 

du
ra

tio
n Information Discount 1 Discount 2

0 5 10 15 20 25 30 35 40 45

0
2
4
6

C
ha

rg
in

g 
du

ra
tio

n Information Discount 1 Discount 2

0 5 10 15 20 25 30 35 40 45
0
1
2
3

Id
le

 d
ur

at
io

n

Information Discount 1 Discount 2

0 5 10 15 20 25 30 35 40 45
Days relative to treatment

Info prompt Control Large discount Small discount
Large-large Large-small Small-small

Figure II: Total charging behavior by day
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durations, which suggests that the larger discounts are associated with longer sessions (Table
D1).20 This may imply that drivers either adapt to the extended financial incentives (i.e.,
require time to establish new charging habits) or that providing discounts to fewer drivers
diminishes perceived scarcity of available chargers and to secure the associated discounts.

Although we do not observe any significant changes in total campus charging, our inter-
ventions prompted a redistribution among a few commuter groups. Specifically, we noted a
shift in the number of charging sessions from high-utilization garages to medium-utilization
garages during the informational treatment (Table D3), and a slight increase in campus
charging by commuters who experience low glitch rates during the second financial discount
(Table D5). This may suggest that informational and financial treatment result in larger
campus charging responses for workplace charging facilities characterized by lower conges-
tion and greater reliability. In addition, we observe a slight substitution in total charging
behavior from infrequent to frequent commuters (Table D7), indicating that interventions
may have a more pronounced effect on commuters with greater flexibility regarding whether
to charge on a given trip to campus.

2. Effect on the timing of charging behavior Next, we transition to temporal shifts in
charging behavior. Figure III shows the average number of charging sessions and energy
consumed per driver, by hour of the day, over the course of each intervention − the infor-
mational (Panel A), first financial (Panel B), and second financial treatment (Panel C).21

To calculate total energy delivered, we assume that energy is dispensed to the EV uniformly
while actively charging. During each intervention, most charging sessions are initiated dur-
ing 7–9 am, with a second smaller peak around 12 pm. Most energy is delivered over 9 am
– 3 pm once most EVs are plugged in.

Information led to a substantial decrease in charging sessions initiated between 5–7
am, but a slight increase in initiated sessions between 7–10 am (Panel A). In addition, we
observe a reduction in initiated sessions between 3–9 pm. Conversely, the first financial
intervention shifts charging to 5–7 am (Panel B). Although the effect on these early morning
sessions disappears during the second financial discount, we observe a considerable increase in
initiated sessions between 5–9 pm. Consequently, environmental prompts seem to effectively
contribute to postponed scheduling of morning sessions and fewer late afternoon and evening

20Although the informational and first financial treatment exhibit no significant effect on the average
energy, session cost, or duration of charging sessions, we observe two non-significant shifts: a decrease in
charging duration due to informational intervention and an increase in the charging duration due to the
financial discount. One plausible explanation is that discounts induce drivers to plug in earlier in the
morning, leading to longer stays on campus and longer duration sessions. In contrast, the informational
treatment causes drivers to arrive later in the morning, resulting in shorter sessions.

21Analogous results for the other measures of total charging, e.g. cost and duration, are given in Figure
C9.
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sessions—both of which lead charging to better align with solar energy generation. Financial
incentives induce a shift to earlier morning and overnight charging, driven by greater evening
arrivals on campus.

Figure III: Number of charging sessions and energy consumed by hour of the day

Notes: The figure displays the average number of charging sessions and energy consumed per driver, by
hour of the day, over the course of each intervention – the informational (Panel A), first financial (Panel B),
and second financial treatment (Panel C). Bars indicate charging sessions; lines denote energy consumed.
To calculate total energy delivered, we assume that energy is dispensed to the EV uniformly while actively
charging.

Table III presents the regression estimates of the daily temporal distribution of charging
for the informational (Panel A), first financial (Panel B), and second financial treatment
(Panel C), as well as the interaction between the information and first financial incentive
(Panel D). The informational treatment resulted in a significant decrease of .133 (67%) in
early morning (5–7), which was compensated by an (insignificant) increase in charging during
the morning (7–10). Given an average of .89 weekly campus charging sessions per driver,
around 15.4% of sessions were shifted away from early morning. This indicates a pronounced
intertemporal substitution effect, wherein the environmental prompts induced a shift from
early morning toward daytime charging when solar energy generation is more abundant.

Conversely, the first financial discount for workplace charging yielded a significant in-
crease of .072 (103%) in overnight (21–5) and .073 (61%) in early morning sessions and an
(insignificant) decrease in charging over the rest of the day. This pattern suggests an in-
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tertemporal substitution in the opposite direction — outside of the solar midday period. This
is consistent with charging behavior during the Clean Air Day, which saw drivers initiate
earlier charging sessions.22

Finally, the second financial discount for campus charging led to a significant increase
of .226 (35%) in midday (10–16) and .229 (88%) in evening sessions (16–21), but offset the
influence of charging sessions initiated overnight and early morning. Drivers who received
large discounts were not more likely to charge overnight or during early morning compared
to those who were switched to small discounts in the second phase. Put differently, the effect
on overnight and early morning charging during the first large discount had no lasting effect,
which reflects an absence of habit formation after the first financial treatment.23 The shift
to midday sessions could reflect that drivers’ require time to internalize the discounts before
adjusting their charging behavior. The shift to evening sessions also causes longer session
and idle duration (Table D1). In addition to the intra-day shifts of charging sessions, we
provide evidence that commuters slightly increase their total energy consumed on weekends
during the financial treatments (Table D10), suggesting potential intra-week substitution of
charging sessions.

III.C Mechanisms

To assess the mechanisms behind the temporal shifts in campus charging, we empirically
test three factors that may explain the temporal shifts in charging sessions: the “quality”
(i.e., reliability and availability) of campus charging infrastructure (Section 1.), the effect of
experimental incentives on perceptions of charger scarcity within the campus charging net-
work (Section 2.), and the characteristics of drivers, in particular their commuting flexibility
and whether they have access to home charging (Section 3.).

We focus on these three mechanisms for (at least) three reasons: First, drivers have re-
ported difficulty finding an available and reliable charger on campus in the enrolment survey,
aligning with existing literature highlighting these as common shortcomings in public charg-
ing infrastructure.24 Second, scarcity concerns emerged as a potential explanation for the

22On Clean Air Day, there was a shift in charging sessions from midday to morning (Figure A4, Panel B),
indicating that the 50% discount on charging rates may motivate drivers to arrive earlier to work to secure
an open charger.

23One potential explanation is that our study occurred over a relatively short timeframe. Given that
drivers charge roughly once per week, our estimated treatment effects should be interpreted as short-term
effects and drivers may require a longer horizon to form charging habits. Alternatively, as the pool of drivers
receiving the large discount was halved in the second financial treatment, drivers may learn over time that
such early morning arrivals are not necessary to secure a charger.

24Charger unreliability is a known impediment to EV adoption and charging. For example, Rempel et
al. (2022) report that only 73% of DC fast charger ports sampled in the Greater Bay Area in 2022 were
operational, far below the 95–98% range claimed by EV service providers.
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Table III: Effect on the timing of charging

Timing of initiated charging session

(1) 21-5 (2) 5-7 (3) 7-10 (4) 10-16 (5) 16-21

A. Informational prompt -.048 -.124* .202 -.049 .017
(.044) (.072) (.176) (.137) (.083)

Mean Dep. Var. .09 .2 1.05 .75 .37

B. Financial incentive 1 .061** .084* -.076 -.043 -.046
(.030) (.049) (.130) (.092) (.062)

Mean Dep. Var. .07 .13 .76 .49 .26

C. Financial incentive 2 .040 -.061 -.002 .194* .205**
(.062) (.082) (.140) (.121) (.093)

Mean Dep. Var. .07 .19 .71 .63 .26

D. Information x large discount -.045 -.146 .106 .011 .003
(.077) (.115) (.313) (.215) (.144)

Observation 629 629 629 629 629

Notes: This table presents the regression estimates for the time of day in which sessions are initi-
ated for the informational (Panel A), first financial (Panel B), and second financial treatment (Panel
C), as well as the interaction effect between information and the first financial treatment (Panel D).
The outcome variables indicate the number of initiated charging sessions during overnight (21:00 -
4:59) (column 1), early morning (5:00 - 6:59) (column 2), morning (7:00 - 9:59) (column 3), midday
(10:00 - 15:59) (column 4), and evening (16:00 - 20:59) (column 5) periods. All regressions include
individual demographic, vehicle, charging infrastructure, and motivational control variables, as well
as vehicle-fixed effects. The mean outcome variable is reported beneath the coefficients. Robust stan-
dard errors, clustered by individuals, are in parentheses. *, **, ***: statistically significant with 90%,
95%, and 99% confidence, respectively.
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temporal shifts in the first financial experiment, with greater early morning charging indicat-
ing intensified competition for chargers due to limited availability. Third, analyzing driver
characteristics is critical for identifying which socio-demographic groups respond most to our
interventions, thereby targeting interventions toward the most responsive socio-demographic
groups. Understanding the mechanisms can help institutions and policymakers predict tem-
poral shifts in charging behavior depending on the characteristics of their charging networks,
incentives, and commuters.

1. Quality of charging infrastructure. We test two charging network attributes that
plausibly affect drivers’ charging decisions. The first is high network utilization, defined
as the fraction of chargers used during a given hour, which could discourage drivers from
charging on campus. As Figure V illustrates, by 9 am the two largest campus zones (West
Campus and East Campus) typically experience 80–90% weekday utilization, while all other
zones experience over 50% utilization.25 Periods of high utilization largely align with periods
of low grid carbon intensity.

To empirically estimate whether network utilization is a mediating factor in our esti-
mated temporal shifts in campus charging during the interventions, we run separate regres-
sions for drivers who do their modal charging at low, medium, and high utilization garages
— defined as garages with ≤ 60%, 60− 75%, and ≥ 75% utilization, respectively, during the
morning commute period (7 – 12 pm). We observe that the informational and financial in-
terventions affect drivers who typically charge in low- and high-utilization garages differently
(Figure IVa). In response to informational prompts, the drivers who shift from overnight to
morning charging are exclusively those who typically charge in low-utilization garages. This
suggests that drivers’ responsiveness to non-financial informational prompts and willingness
to change behavior is higher when there is a perceived lack of charger scarcity.

In contrast, financial discounts predominantly affect drivers who use medium- and high-
utilization garages. These drivers shift charging to periods with lower network utilization:
during the first financial incentive, they shift toward overnight and early morning charging,
whereas during the second financial incentive, they shift toward evening charging. These
shifts may reflect an expectation that large discounts on charging will intensify competition
for chargers that are already highly utilized during peak periods, and, consequently, that
drivers in garages with high utilization rates may need to shift charging to periods with
lower utilization to guarantee they receive a charge. Consistent with drivers’ concerns about

25We calculate “effective” network utilization, which excludes chargers that are temporarily non-
operational or out-of-service (Appendix C.2). These estimates represent a lower bound because we do
not detect when stalls are occupied by non-charging vehicles (e.g., non-EVs parked in EV charging spots
or EVs exploiting favorable parking opportunities without charging). Appendix C.3 summarizes network
utilization at UCSD.
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(a) Network utilization

(b) Charger unreliability

(c) Incentive-induced scarcity
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(d) Commute frequency

(e) Access to home charger

Figure IV: Effect on the timing of charging by mechanisms

Notes: This figure displays the significant regression estimates (hollow bar) for the time of day in which
sessions are initiated across the informational (left), first financial (middle), and second financial treatment
(right). We show significant treatment effects (solid bars) on the timing of charging sessions for five mech-
anisms: Network utilization (Panel a), session glitch rate (Panel b), incentive-induced scarcity (Panel c),
commute frequency (Panel d), and access to home charging (Panel e). Morning and midday periods are
associated with low grid carbon intensity (7 - 16; depicted in yellow), whereas evening periods typically ex-
hibit higher carbon intensity (16 - 21; depicted in red). Section D.3 provides the corresponding regression
results on the timing of charging behavior. We set statistically insignificant estimates to 0. 95%-confidence
intervals are indicated through whiskers and reflect robust standard errors.
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charger scarcity, these temporal shifts induced by the financial discount occurred primarily
in campus zones with high network utilization (Table D12).
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Figure V: Network utilization by time of day and campus zone

Notes: This figure shows the effective hourly utilization of chargers for the five campus zones over the
experiment period (October 4 - November 19). We define the effective hourly charger utilization as the per-
centage of chargers used in a given hour relative to all chargers used during the experiment period. We ex-
clude chargers that are non-operational and out-of-service. Figure B2 shows the five distinct parking zones
on the UCSD campus.

The second network attribute that could discourage drivers from charging on campus
is the perceived unreliability of chargers. We measure this unreliability of chargers as the
percentage of charging sessions that “glitch” (i.e., that fail to deliver a meaningful energy),
which varies between 15 to 20% daily for PowerFlex and ChargePoint chargers on campus
(Figure C7). Of all attempts to charge during our study, only 86% yielded meaningful energy
(> 0.5 kWh).26 Moreover, drivers who unsuccessfully plug in on their initial attempt are less

26Charging attempts may fail due to user error, physical charger damage, software bugs, or device or app
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likely to receive a charge during successive attempts (Figure C8).
Because these failed attempts occur more frequently in particular garages, we assess

whether charger unreliability was a cause of the temporal shifts in campus charging by
comparing drivers that experience a low (≤ 10%), medium (10 − 20%), and a high rate
of failed sessions (≥ 20%), or “glitch rate”, at their modal garage. Consistent with the
hypothesis that drivers are more willing to shift their charging behavior when chargers are
reliable, drivers who charge at low-glitch-rate garages drive most temporal shifts in charging
during all interventions (Figure IVb). During the informational intervention, these drivers
shift charging away from early morning; during the first financial intervention, they shift from
morning to overnight; and during the second financial intervention, they shift to midday and
evening.27 Consistent with the charger unreliability mechanism, we find that the temporal
shifts to evening and overnight charging during the financial interventions mainly stem from
the ChargePoint stations, which have significantly lower glitch rates (Table D14).

2. Experimental incentive structure. In addition to the quality of network infrastruc-
ture, financial discounts themselves could in turn increase drivers’ perceptions of scarcity if
drivers believe lower charging rates induce greater campus-wide charging. An “induced” ex-
pectation of additional network use could decrease drivers’ inclination to charge on campus
or deviate from existing charging patterns in response to discounts.

To test whether incentive-induced scarcity was a cause of temporal shifts in campus
charging during the interventions, we conduct a follow-up financial intervention that is similar
to the first financial discount but that additionally primes drivers’ beliefs about the number
of EV drivers who receive the discount (Appendix A.9). In this follow-up intervention, the
scarcity treatment group received a notification implying that the entire Triton Chargers EV
club would get the discount, while the control group received a similar notification implying
that only one-third of the club would receive the discount.

Incentive-induced expectations of scarcity resulted in shifts to overnight charging ses-
sions equivalent in magnitude to those of the financial discount intervention (Table D15),
suggesting that drivers’ expectations of additional incentive-induced campus charging have
an impact nearly equivalent to the incentives themselves.28 The interaction between scarcity
and discounts led to an even larger increase in overnight charging sessions, underscoring how

connectivity.
27We observe a temporal shift caused by drivers that experience higher glitch rates in one case: a shift to

morning charging in the informational intervention. One possible explanation is that these high-glitch-rate
garages also have lower utilization, indicating that availability eclipses unreliability.

28Notably, the responses to large financial discounts closely mirror our main findings presented in Table
III. A potential explanation for the absence of a shift towards early morning charging could be drivers’
expectation that heavily discounted charging rates led to increased competition for chargers in the morning
as in the first financial experiment, prompting them to seek charging during low-utilization periods.
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scarcity concerns combined with financial incentives can prompt significant temporal shifts
to periods of low utilization. Thus, the incentive-induced perception of scarcity can explain
our observed shifts toward overnight charging when the network is less congested.

3. Driver characteristics. Drivers who have greater flexibility in their decisions about
when to commute to campus and charge may be better able to adapt their commuting
and charging schedules in response to nudges and discounts (Kacperski et al., 2022). To
test whether greater commuting flexibility influences charging behavior, we compare the
temporal shifts of commuters with different commute frequency. Given our context as a
workplace charging network, we identify drivers who commute frequently (≥ 3 times per
week) as possessing higher flexibility, as they can select from a variety of days for charging.
Frequent commuters are solely responsible for the shift to evening and overnight sessions
during the first and second discount (Figure IVd), suggesting that commuter groups with
greater flexibility are more likely to adjust their charging schedule.

An additional driver characteristic that could deter the use of workplace charging is
access to private home charging and low-cost overnight charging rates, which render home
charging a more convenient option (Jabeen et al., 2013). Consistent with this mechanism, we
find that providing financial discounts induces large shifts to evening and overnight charging
sessions from drivers without a home charger (Figure IVe) or those who report paying high
modal prices for charging at their usual location (Table D18). These results imply that
the convenience of residential charging for treated drivers plays a key role in how financial
incentives shift the timing of charging sessions.

IV Welfare implications

IV.A Welfare effects

We estimate annual net welfare effects per driver, from the institution’s perspective, from
intertemporal behavioral shifts observed in each of the information, first financial, and second
financial treatments.29 We focus on the welfare effects of intertemporal substitution, leaving
aside the effects of shifting charging to campus that require further assumptions to calculate
off-campus charging. In our calculations, we consider two categories of social benefits: First
are avoided damages of CO2 emissions, denoted △CO2, equal to the product of the change
in CO2 emissions corresponding to temporal shifts in charging and the social cost of carbon
(equation 3). Second are revenues earned through the Low Carbon Fuel Standard (LCFS)

29From the global perspective, intervention implementation costs are a transfer from the institution to
drivers receiving the discounts and hence would not a part of global welfare effects.
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program, denoted △LCFS, equal to the product of the change in electricity consumption
by hour and the carbon intensity of electricity at that hour (equation 4). We contrast these
benefits to the cost of implementing the intervention, △Costs, calculated as the product of
the per-kWh discount size and energy consumed for all qualifying charging sessions (equation
5).

Focusing on marginal changes induced by the experiment, the net welfare △W is the
sum of avoided CO2 emission damages, LCFS revenues, and intervention implementation
costs per driver annually:

△W = △CO2︸ ︷︷ ︸
Global pollutant

+ △LCFS︸ ︷︷ ︸
Local benefit

− △Costs︸ ︷︷ ︸
Local costs

(2)

Table IV summarizes the annual welfare effects for each intervention, per equation (2). We
convert average treatment effects over the experiment (18 days of informational prompts; 13
days of each discount) to annual effects. For the informational treatment, the net per-driver
welfare effect is $22.12 because information leads to less early morning and greater morning
charging. This comes from a $12.51 reduction in carbon emissions and $9.61 earned LCFS
revenue from shifting charging sessions to hours with lower grid intensity. In contrast, the
net welfare effect of the first financial treatment equals −$346.38 per driver, resulting from
an increase in carbon emissions (−$10.23) and LCFS revenue (−$7.67) by shifting to early
morning charging hours with higher grid intensity. In addition, the financial discounts paid
to the drivers correspond to an average cost of −$328.48. The net welfare effect of the
second financial treatment equals −$373.64 per driver, which results from an increase in
CO2 emissions (−$5.8) and LCFS revenue ($.83) by shifting to late evening charging hours
with higher grid intensity. In addition, the financial discounts paid to the drivers correspond
to an average cost of −$368.66.

From the perspective of UCSD, when considering the effect on all Triton Charger EV
club members and treating intervention costs as transfers (i.e., omitting intervention costs),
the informational prompts increased welfare by $13,913 due to shifts in the timing of charging,
while the first and second financial discounts decreased welfare by -$11,259 and -$3,126,
respectively. If scaled to all EV owners in California (currently 1.29 million vehicles), the
informational treatment would avoid CO2 emission damages equal to $16.1 million, —$13.2
million from the first discount, and —$7.5 million from the second.
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Table IV: Welfare effect decomposition

Intervention ($)

Information Discount 1 Discount 2

Avoided CO2 damages (△CO2) 12.51 −10.23 −5.8
LCFS revenues (△LCFS) 9.61 −7.67 .83
Intervention costs (△Costs) −328.48 −368.66

Welfare effects (△W ) 22.12 -346.38 -373.64
Notes: This table reports the annual welfare effects per driver, from the perspective of the institution,

from changes in the timing of charging sessions, per equation (2). Welfare effects are reported for the in-
formational (column 1), first financial (column 2), and second financial treatment (column 3).

Avoided CO2 emission damages. To estimate the monetary implications of the car-
bon emission changes, we compute how treatment affects commuters’ charging-induced CO2

emissions. Equation (3) displays the hourly charging-related carbon emission changes that
arise through the information and financial treatment for each hour h of the day:

△CO2 =
24∑
h=1

(βkWh
h · CIh︸ ︷︷ ︸
Information

+ δkWh
1h · CIh︸ ︷︷ ︸
Discount 1

+ δkWh
2h · CIh︸ ︷︷ ︸
Discount 2

) · SCC. (3)

The coefficients βh, δ1h, and δ2h indicate how the informational, first financial, and second
financial treatment affect the total energy consumption (kWh) during each hour of the day
(Figure VI). The coefficients refer to the effect on average energy consumption between the
plug-in time and plug-out time. CIh refers to the hourly carbon intensity (gCO2/MJ) per the
California Air Resources Board Low Carbon Fuel Standard (Figure B4).30 Multiplying this
by the social cost of carbon (SCC) of 210 $

tCO2
following the estimates from the Environmental

Protection Agency (2022) yields the total cost of carbon emissions.
The left Panel of Figure VI shows the changes in hourly carbon emissions (in kilograms

of CO2) due to intertemporal shifts in charging during the informational and two financial
interventions. The informational prompts cause a decrease in carbon emissions, particularly
from 5–7 am when drivers shift charging away from this period, resulting in a total reduction
of 1 to 3 kilograms of CO2 per driver over the course of the intervention. In contrast, the first
financial intervention is associated with an increase in carbon emissions between 5–7 am of
0.5–2 kilograms of CO2 due to greater early morning charges. The second financial discount
results in an increase of carbon emissions of up to 2 kilograms from charging between 4–8

30To transform the carbon intensity factor from gCO2/MJ into tCO2/kWh, we multiply CIh by
3.6 MJ/kWh · 10−6t/g.
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pm and a slight increase overnight. Aggregating the carbon emission changes over the day,
the informational treatment yields annual net benefit of $12.51 per driver, while the first
and second financial treatment results in net losses of $10.23 and $5.8.31

Figure VI: Effect on hourly CO2 emissions and LCFS revenue

Notes: The left figure displays the changes in hourly CO2 emission per equation (3) due to the informa-
tional, first financial, and second financial treatment. The right figure displays the change in LCFS revenues
per equation (4) due to the informational, first financial, and second financial treatment. The black dashed
line denotes the quarterly carbon intensity from the California Air Resources Board in 2022.

LCFS revenues. The LCFS is designed to decrease the carbon intensity of California’s
transportation fuel pool and provide an increasing range of low-carbon and renewable alter-
natives, which reduce petroleum dependency and achieve air quality benefits.32 We calculate
the hourly LCFS revenue from changes in the timing of charging in equation (4) as:

△LCFS =
24∑
h=1

(CIstandard − CIh/3.4) · (βkWh
h + δkWh

1h + δkWh
2h ) · P̄ · 3.4. (4)

where CIstandard = 89.5 gCO2/MJ is the typical carbon intensity from gasoline-powered cars,
and P̄ = 64.51 $/t is the LCFS credit price per ton. CIstandard is multiplied by 3.4, which is
the Energy Economy Ratio showing the fuel-feedstock combination displacing gasoline with
a light-/medium-duty EV.

The right Panel of Figure VI illustrates the effect of each treatment on LCFS revenues.

31As the shifts to earlier arrivals may partly be due to the congested network, financial discounts in low
utilization networks may not result in an increase of CO2 emissions.

32The LCFS Credit Transfer Activity Reports can be found at
https://ww2.arb.ca.gov/resources/documents/weekly-lcfs-credit-transfer-activity-reports.
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Aggregated over the course of the day, the informational treatment increases the LCFS credit
by $9.46 per driver. In contrast, the financial treatment leads to a reduction of −$7.67 in
LCFS credit due to shifts to overnight and earlier morning charging. Overall, the second
financial treatment increases LCFS revenues by −$.83 because it increases midday charging
and late evening charging.

Cost of incentives. To determine the financial costs of discounts extended to the par-
ticipants, we multiply the total energy consumption for both the small and large discount
groups throughout the experiment duration by the respective small ($.16/kWh) and large
($.23/kWh) discounts applicable to all charging sessions on the UCSD campus:

△Costs = (El · $.23/kWh)︸ ︷︷ ︸
Large discount

+ Es · $.16/kWh︸ ︷︷ ︸
Small discount

) (5)

El and Es refer to the total energy consumption of the large and small discount group, respec-
tively, over the experiment. We assume no financial costs for the informational treatment.
For the first financial treatment, the total financial incentives paid to the participants equal
$204.3 for the large and $124.18 for the small discount. For the second financial treatment,
the total financial incentives provided to the participants equal $243.76 for the large and
$124.9 for the small discount.

IV.B Distributional effects

A common objection to financial incentives for charging sessions is that the benefits are
distributed unevenly across socioeconomic groups. Figure VII presents the distributional
profile of the financial discounts across six income brackets in our study population. Nor-
malized by group size, the uptake of discounts is uniform across income brackets. However,
because EV drivers skew wealthier in our study, high-income households earned the majority
of financial discounts for campus charging. While we paid $1, 667 in discounts to the highest
income group, the lowest income group received only $216. Given that current EV drivers
are wealthier, providing financial incentives to shift these individual’s charging sessions to
the workplace is a highly regressive policy tool. As the pool of EV drivers becomes more
representative of the broader population, this tool should become less regressive.
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Figure VII: Discounts by income

Notes: This figure shows the discounts paid per driver for each of the six income groups in our study (left
axis), and the total discount paid to each income group (right axis). Income is presented at approximately
the midpoint of the income brackets. The six groups report incomes (in 000 $) of ≤ $25; $25 − $50; $50 −
$75; $75− $100; $100− $150; and > $150.

V Conclusion

As the market for new electric cars and trucks increasingly shifts from early to mainstream
adopters, who are expected to have less access to private home charging, understanding where
and when these new drivers charge their vehicles is pivotal for addressing their increased
energy needs with renewable energy. As electric grids move toward renewable energy, par-
ticularly solar, they have large variations in marginal emissions throughout the day. Clean,
efficient EV charging in these grids will require temporal shifts toward midday when solar
generation peaks and most people are at work. The consequences of failing to shape such a
substantial source of future electricity demand are enormous: if charged during daytime, the
California EV stock (currently 1.29 million vehicles) would decrease annual emissions by 1.2
MtCO2 compared to overnight charging. This would translate to global avoided damages of
$252 million, assuming a social cost of carbon of 210 $

tCO2
.

The optimal timing of EV charging involves an inherent tradeoff between grid congestion
and CO2 emissions.33 Currently, grid congestion is the primary concern, which is why electric
utilities offer lower rates for nighttime EV charging. However, as more EVs are on the
road and renewable energy capacity increases, policies should encourage a shift to daytime

33This mirrors congestion-emission tensions in other transportation settings, e.g. congestion zone pricing
in city centers (Nilsson et al., 2023).
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charging to optimize power usage. Between 2022–23, California curtailed 2.6 million MWh
of renewable power, mainly during midday, due to a lack of demand — enough energy for 35
million full charges of an average EV and enough to charge 633,000 EVs (half the California
stock) over an entire year.34

The empirical findings of our field experiment at UCSD can inform workplace and
campus policy aimed at encouraging sustainable daytime charging. The results highlight
the importance of environmental knowledge about daytime charging and the limitations of
price mechanisms to achieve daytime workplace charging. While our informational prompts
and financial discounts did not influence total campus charging, they reshaped total daily
charging patterns. Information about the climate benefits of daytime charging prompted a
shift in charging from morning toward daytime, better aligning with periods of solar energy
generation. In contrast, financial discounts spurred drivers to charge earlier in the morning
and later in the evening, outside the optimal period.

Understanding the flexibility of EV charging is vital for developing effective policies
and identifying drivers most amenable to these policies. In our experiment, the significant
differences among our diverse campus population point to some of these sources of flexibility.
Short-distance commuters and students, for example, likely have more flexible schedules due
to their shorter commutes or dynamic weekly class schedules, were among the most responsive
groups to the information about the benefits of daytime charging, reducing early morning
charging. However, students, who are likely to be more price-elastic, were also more likely
to shift to overnight charging when given discounts. In contrast, drivers with less flexible
schedules, such as long-distance and daily commuters, shifted their charging in more marginal
and structured (but still important) ways—e.g., arriving a few hours earlier in the morning
when given discounts.

The experiments at the UCSD campus are the start of an evidentiary basis for under-
standing driver charging behavior at workplaces and how it can be shaped. However, more
research is needed to understand how more nuanced discount structures (e.g., time-based
or kWh-based) might encourage campus and daytime charging, how to encourage deeper
charge sessions to achieve higher network utilization, and how our results generalize to other
workplaces. First, the experiment we conducted focused on a college campus, and most non-
academic institutions may not face a similar combination of employees, who have mostly
set schedules and commutes, and students, who have flexible schedules and live either on
or near campus. Second, our study population consists of UCSD affiliates, who drive EVs,

34This calculation considers only battery EVs (not plug-in hybrids) and assumes mean vehicle performance
(3.5 miles/kWh efficiency, 76 kWh battery size), 14,600 annual driving miles, and mean overnight (22–6) and
daytime (9–15) grid carbon intensities of 86.4 and 22.6 gCO2/MJ , per CARB’s LCFS emission attribution
methodology that uses average emission factors.
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choose to charge at work, and are self-selected in our study – and each of those attributes
may entail some selection bias. Consequently, our estimated treatment effects may be higher
than for the average population as we expect our subset of early EV adopters to be partic-
ularly responsive to the interventions. As many similar institutions are at the forefront of
the EV transition, our results should hold reasonably well for these. By tailoring policies to
consider the specific composition of drivers and targeting informational campaigns to those
most receptive, workplaces can play a pivotal role in fostering sustainable charging practices
and mitigating emissions from EV charging.
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A Experimental design

This section provides additional details about EV drivers at the UCSD campus and our
recruitment of drivers into the Triton Chargers EV club (Section A.1), the experimental
schedule (Section A.2), informational prompts (Section A.3), emails notifying participants
about financial discounts (Section A.4), odometer survey (Section A.5), enrollment survey
(Section A.6), Clean Air Day (Section A.7), Spring trial informational experiment (Section
A.8), and charger scarcity experiment (Section A.9).

A.1 EV drivers at the UCSD campus

EV chargers at the UCSD campus are available for use by UCSD affiliates (faculty, staff,
students) and the general public. All charging session data (anonymized) are logged by the
charger vendors and may be used by the UCSD Transportation Services Office for operational
(non-research) purposes. Available to all drivers, affiliate and public, is the base campus
charging rate set by the Transportation Office. During our experiments, the base rate was
$.30/kWh for Level-2 charging.

To promote EVs and help plan transportation electrification at the campus, the Trans-
portation Office offers a 5 ¢/kWh discount (17% off the base rate) to affiliates who sign
up and provide demographic and home residence information and unique charger vendor
identification numbers.

Our team spent about one year recruiting members into a new club for EV-driving
affiliates — what we call the “Triton Chargers” EV club. Enrollees agreed to participate in
research experiments and respond to surveys and in return receive additional information
and discounts on campus charging. To be eligible, drivers must be between 18 and 80 years
of age, hold a driver’s license valid in California, and be the primary driver of an EV which
they intend to keep for at least one year after enrolling. Upon enrollment, drivers respond
to a survey about their demographics, EV, charging habits and motivations, and commuting
habits (Section A.6). Drivers also respond to recurring (usually twice monthly) surveys that
request an odometer reading and updates about their EV (Section A.5). These data allow
for estimates of total charging activity. With unique vendor identification numbers (for
ChargePoint and PowerFlex), we can analyze each driver’s unique campus charging activity
as the session level.
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A.2 Experimental schedule

Figure A1: Experimental schedule for the three interventions

Notes: This figure documents the experimental schedule, including dates of all email messages to study
participants, prompts, surveys, and relevant holiday and campus dates. The experiment consists of three
interventions: an informational (October 4 to October 23), first financial (October 24 to November 5), and
second financial (November 6 to November19) intervention. During the informational intervention, the treat-
ment group receives a weekly email message ("Prompt 1 of 3", etc.). Prompts were sent at 6:30 am on the
specified day. The Clean Air Day (a non-research campus promotional day) was October 4th; notifications
from the Transportation Office were sent to the campus community on the prior day. The first financial
intervention is denoted by "Phase 1"; the second, by "Phase 2". Two additional phases (Phases 3 and 4;
November 20 to December 17) ensure that drivers in the study have equal access to financial incentives (e.g.,
so that participants who receive small discounts in Phases 1 and 2 can access large discounts in Phases 3
and 4) but are not part of our analytical experiment.

A.3 Informational prompt

Prior to the experiment, a welcome email (September 27) was sent to all study participants:

• [Welcome Message]: Dear Triton Charger, Welcome back to campus. We write because
you have joined the Triton Chargers EV Research Club—are a “Triton Charger”—and

3



Appendix Garg, Hanna, Myers, Tebbe & Victor

agreed to participate in research on EV charging. Starting next week, you will receive
another message from us about our first set of research activities for this fall. As
you may have seen, there have been a number of changes on campus with parking,
EV policies, and costs. Information on UCSD’s EV network is maintained here. One
of the benefits of being a Triton Charger is that you will have access to additional
charging discounts and other information about the benefits of charging on campus.
During the fall, you will also receive a few surveys that request odometer readings as
well as opportunities to earn prizes. These surveys—one of which we sent today—are
very brief (2 questions) but extremely important for our research. We thank you for
your participation. If at any time you have questions about this research study or EV
charging on campus, please do not hesitate to contact us. Learn more about the Triton
Chargers club here.

The treatment in the informational experiment consists of an emailed prompt (text below)
and the infographic (Figure A2):

• [Informational prompts]: In San Diego in fall, charging a typical EV during daytime,
when solar power is plentiful, avoids 29 pounds of CO2 emissions compared to
charging during nighttime when California relies heavily on burning natural gas to
generate electricity. This is equivalent to avoiding burning 1.5 gallons of gasoline
with every charge; scientists estimate that these avoided CO2 emissions prevent
$2.75 in costs to human welfare and the global economy.

Figure A2: Infographic included with the informational prompt
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As part of informational prompt, we calculate CO2 emissions avoided, the gasoline
equivalent of those CO2 emissions, and global environmental damages avoided from shifting
from nighttime to daytime charging in California. We calculate avoided emissions from
charging during daytime compared to nighttime as the difference in emissions between an
archetypal daytime and nighttime session:

Emissions avoided = Emissionnight − Emissionday = CInight · E– CIday · E,
where CInight = 87gCO2/MJ and CIday = 15gCO2/MJ is the mean carbon intensity of the
power grid (per CARB’s LCFS program methodology; see Table B4) during nighttime and
daytime during the period of our experiments (quarter 4), and E is the energy consumed
during the charge session. In our calculation we assume a 75% fill-up of a Tesla Model 3
with a 68-kWh battery (51 kWh in total) over 4 hours (12 am to 4 am for nighttime; 8 am
to 12 pm for daytime). Thus, the emissions avoided by shifting from nighttime to daytime
EV charging, expressed as avoided CO2, is

(87− 15)
gCO2

MJ
· 51kWh · 3.6MJ/kWh · 2.2lb/kg = 29lbCO2

The gasoline equivalent (in gallon) associated with these avoided CO2 emissions is given by

Gasoline equivalent = Emissions avoided · CO2 content of gasoline,

where one gallon of gasoline, combusted, produces 19.4 pounds of CO2. The gasoline equiv-
alent when shifting from nighttime to daytime EV charging is

29lbCO2 · 1

19.4 lbCO2

gal

= 1.5 gallons

The global environmental damages avoided (in $) due to avoided CO2 is given by

Damages avoided = Emissions avoided · SCC,

where we assume the social cost of carbon (SCC) is 210 $
tCO2

following estimates from the
U.S. Environmental Protection Agency (2022). The average monetary damages when shifting
from nighttime to daytime EV charging is

29 lbCO2 · (1kg / 2.2lb) · (1t / 1000kg) 210 $

tCO2

= $2.75
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A.4 Prompts for the financial discounts

Research participants were notified about financial discounts via email. On October 23,
ahead of the first financial treatment, the following messages were sent to the large and
small discount treatment arms:

• [Large discount group]: From October 24 through November 5, we will offer a
>75% discount on all Level-2 charging you do on campus. We are providing a
$0.23/kWh discount on the base campus price of $0.30/kWh. That means you pay
just $0.07/kWh. After November 5, these discounts will continue, but they may
change in size. We will tell you of all changes ahead of time.

• [Small discount group]: From October 24 through November 5, we will offer a
>50% discount on all Level-2 charging you do on campus. We are providing a
$0.16/kWh discount on the base campus price of $0.30/kWh. That means you pay
just $0.14/kWh. After November 5, these discounts will continue, but they may
change in size. We will tell you of all changes ahead of time.

On November 5, ahead of the second financial treatment, the following messages were sent
to the large–large, large–small, and small–small discount treatment arms:

• [Large - large discount group]: In October, we announced discounted campus charging
through November 5. From November 6 through November 19, your discount
will remain the same. The Triton Chargers research team will continue to provide
a >75% discount ($0.23/kWh) off the base campus price of $0.30/kWh. That means
you will continue paying just $0.07/kWh. After November 19, these discounts will
continue, but they may change in size. We will tell you of all changes ahead of time.

• [Large - small discount group]: In October, we announced discounted campus
charging through November 5. From November 6 through November 19, your
discount will now be smaller. It will decrease from about 75% to 50% off the
campus’s base price of $0.30/kWh. That means you will now pay just $0.14/kWh.
After November 19, these discounts will continue, but they may change in size. We
will tell you of all changes ahead of time.

• [Small - small discount group]: In October, we announced discounted campus
charging through November 5. From November 6 through November 19, your
discount will remain the same. The Triton Chargers research team will continue

6
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to provide a >50% discount ($0.16/kWh) off the base campus price of $0.30/kWh.
That means you will continue paying just $0.14/kWh. After November 19, these
discounts will continue, but they may change in size. We will tell you of all changes
ahead of time.

Similar messages were sent for Phases 3 and 4 (Section A.2), though these were not part of
the analytical experiment.

A.5 Odometer survey

Odometer surveys were sent to all participants via email and with the following message:

• As part of ongoing EV research at UCSD, please help us by completing a very brief
2-question survey on your current odometer reading. Odometer readings are
important because they help us better understand how you are using the campus EV
network to meet your charging needs. As a reminder, we are sending a few surveys
over the Fall quarter. By responding to at least two, you will be entered into a raffle
for one of three $1, 000 Visa gift cards, drawn at the end of the quarter. For each
additional survey returned beyond the two, you will receive an additional two raffle
tickets.

Odometer
1. What is the current odometer reading on your primary EV or plug-in hybrid? Please
round to the nearest mile.

• [Open response]

2. Please take a photo of the odometer on your vehicle dashboard and upload it here. (You
have 7 days to complete this survey. If you are not currently in your vehicle, you can pause
the survey and return later.)

Electric vehicle
3. In the last 2 weeks, have you changed the primary EV or plug-in hybrid that you drive?

• a. No, I drive the same vehicle most of the time.

• b. Yes, I no longer drive an EV or plug-in hybrid.

• c. Yes, I now drive a different EV or plug-in hybrid most of the time.
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3a. [If 3 == c] What is the primary electric vehicle or plug-in hybrid that you currently
drive?

• a. Year [Drop-down list]

• b. Make [Drop-down list]

• c. Model [Drop-down list]

• d. Type [Drop-down list]

A.6 Triton Chargers EV Club enrollment survey

The following is our question list for the Triton Chargers Enrollment Survey.

Intro & Contact
1. Please fill out your contact information

• First Name [Open response]

• Last Name [Open response]

• UCSD email address [Open response]

• Cellphone number [Open response]

2. [Consent form to act as a research subject]

Work/School
3. What is your UCSD status? (If you are a student employee, choose student.)

• a. Undergraduate student

• b. Graduate or post-graduate student (Master’s, PhD, post-doc)

• c. Faculty

• d. Staff

• e. Other

4. While on campus for work or school, which building(s) are you primarily located in?

• a. [Drop-down list]
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Residence
5. Please enter the 5-digit zip code where you live.

• a. [Open response]

6. Which of the following best describes your home living arrangement?

• a. I own a single-family house

• b. I rent a single-family house

• c. I own a condo

• d. I rent a unit in an off-campus, multi-unit complex (e.g. an apartment, condo)

• e. I live in UCSD campus housing, (e.g. undergraduate, graduate, faculty)

• f. Other [open response]

6a. [If 6 == e] If you live on campus, which building/complex do you live in?

• a. [Drop-down list]

7. Do you have access to EV charging at your residence?

• a. [Yes / No / I don’t know]

7a. [If 7 == yes] If you have access to charging at your residence, what type of charger do
you have access to?

• a. Level 1 (110V or 120V—requires no specially installed hardware)

• b. Level II (240V—uses a small box attached to the wall, typically installed by an
electrician, and can charge the car overnight)

• c. DC Fast Charger (480V or 500V—uses a large box installed by an electrician that
can charge the car in an hour or two; rare at residences)

• d. One of these, but I am not sure which one

b. [If 7 == No] If you do not have dedicated charging at your residence, how likely are
you to purchase a home charger in the next 12 to 18 months (assuming such an option is
available to you)?

• a. Extremely unlikely
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• b. Somewhat unlikely

• c. Neither likely nor unlikely

• d. Somewhat likely

• e. Extremely likely

Car
8. What is the primary vehicle or plug-in hybrid that you drive? (If your specific make-
model- year-type is not shown, please select “other” for all four dropdown.)

• a. Year [Drop-down list]

• b. Make [Drop-down list]

• c. Model [Drop-down list]

• d. Type [Drop-down list]

Commuting and Charging Habit and Preferences
9. During the Spring 2023 academic quarter, how often per week do you expect to
commute to campus from offsite using your electric vehicle or plug-in hybrid?

• a. Less than once per week

• b. 1 day per week

• c. 2 days per week

• d. 3 days per week

• e. 4 days per week

• f. 5 days per week

• g. More than 5 days per week

• h. I don’t commute because I live on campus

10. In a typical week, what percentage of your charging do you do at the following locations?

• a. My residence [0–100% slider]

• b. Neighborhood charging plaza within half a mile from my residence [0–100% slider]
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• c. Someone else’s home or residence [0–100% slider]

• d. Destinations (e.g., malls, restaurants, etc.) [0–100% slider]

• e. UCSD campus [0–100% slider]

• f. Other (e.g., freeways, dedicated charging plazas) [0–100% slider]

[Implemented with sliders and a permissive checksum.]

11. On a typical weekday (Monday–Thursday), what percentage of your charging do you do
at the following times of day?

• a. Morning (6am–12pm) [0–100% slider]

• b. Afternoon (12–4pm) [0–100% slider]

• c. Evening (4–9pm) [0–100% slider]

• d. Night (9pm–5am) [0–100% slider]

[Implemented with sliders and a permissive checksum.]

12. At the place and time where you most commonly charge, what rate do you pay?

• a. I don’t know

• b. I have free charging

• c. $0.01–$0.04 cents per kilowatt hour

• d. $0.05–$0.09 cents per kilowatt hour

• e. $0.10–$0.13 cents per kilowatt hour

• f. $0.14–$0.17 cents per kilowatt hour

• g. $0.18–$0.21 cents per kilowatt hour

• h. $0.22–$0.24 cents per kilowatt hour

• i. $0.25–$0.29 cents per kilowatt hour

• j. $0.30–$0.39 cents per kilowatt hour

• k. $0.40–$0.49 cents per kilowatt hour
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• l. $0.50–$0.59 cents per kilowatt hour

• m. $0.60–$0.69 cents per kilowatt hour

• n. $0.70 or more per kilowatt hour

13. When contemplating when and where to charge in the city (ie. at home, on campus,
elsewhere), consider the factors that have the biggest impact on your decision. Which of the
following most apply to you? Drag the bars or type in the boxes at the end to allocate 100
points among the options below.

• a. I charge when or where charging rates (i.e. prices) are the lowest

• b. I charge where and when I think I am most likely to find an open and working
charging stall.

• c. I charge where and when it helps me get more convenient parking.

• d. I charge at stations closest to my daily activities.

• e. I charge when and where I know charging will be quickest (e.g., at DC Fast Chargers).

• f. I charge when and where I think the environmental impact will be the lowest.

• g. I don’t have much choice; I charge on campus because it’s the only convenient
charging option available to me

14. When you charge on the UCSD campus, independent of where you actually end up
charging, what is your preferred on-campus charging location?

• a. Central campus (Gilman parking garage, School of Medicine)

• b. East campus (Athena parking garage, Medical Center, Skaggs)

• c. Graduate housing (One Miramar, Mesa Nuevo, Nuevo West, South Mesa, etc.)

• d. North campus (Hopkins parking garage, Pangea parking garage, Rady School of
Management)

• e. Scripps Institution of Oceanography campus

• f. South (Osler) parking garage

• g. None; I prefer not to charge on campus
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• h. Other

15. If/when you decide to charge on campus, consider the factors that have the biggest
impact on your decisions about when and where at UCSD to charge. Which of the following
most apply to you? Drag the bars or type in the boxes at the end to allocate 100 points
among the options below.

• a. I charge where and when I think I am most likely to find an open charging stall
(e.g. I arrive early in the morning when there are more open stalls).

• b. I charge wherever is closest to my office, lab, or classroom.

• c. I prefer to charge at stations where the allowed stall dwell time is longest, to reduce
the need to move my car or get a ticket for exceeding the limit.

• d. I prefer to charge for a short period of time (e.g. using fast charging) and then
depart

• e. I prefer to charge when and where I think the environmental impact will be the
lowest

Demographics
16. Choose one or more races that you consider yourself to be

• a. White or Caucasian

• b. Black or African American

• c. American Indian/Native American or Alaska Native

• d. Asian

• e. Native Hawaiian or Other Pacific Islander

• f. Other

• g. Prefer not to say

17. Are you of Hispanic or Latino origin?

• a. [Yes / No]

18. What was your total household income before taxes during the past 12 months?
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• a. Less than $25,000

• b. $25,000–$49,999

• c. $50,000–$74,999

• d. $75,000–$99,999

• e. $100,000–$149,999

• f. $150,000 or more

• g. Prefer not to say

19. What is your age?

• a. 18–25

• b. 26–35

• c. 36–45

• d. 46–55

• e. 56–65

• f. 66–75

• g. 75+ 20.

What is your gender?

• a. Female

• b. Male

• c. Other/Non-binary

21. What is the highest level of education you have completed?

• a. Some high school or less

• b. High school diploma or GED

• c. Some college, but no degree

• d. Associates or technical degree
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• e. Bachelor’s degree

• f. Master’s degree (MA, MS, MBA)

• g. Advanced professional degree (PhD, JD, MD, etc.)

EVCC member
22. Are you already a member of the campus EV Charging Club?

• a. [Yes / No / I’m not sure]

Charging Accounts
23. Click here to set up your ChargePoint account if you don’t yet have one or to log in if
you do. Enter your ChargePoint ID below.

• a. [Open response]

24. Click here to set up your PowerFlex account and download the Smartphone app if you
haven’t yet. Enter the email address associated with your PowerFlex account below.

Open Response
Do you have any final comments on the EV charging experience at the UCSD campus?
[Open response]
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A.7 Clean Air Day
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Figure A3: Charging activity on the Clean Air Day by day of the week

Notes: This figure shows the charging activity of the Triton Chargers EV club during the first three
weeks of October by day of the week. Shown are the number of charging sessions (Panel A), energy con-
sumed (Panel B), session cost (Panel C), session duration (Panel D), charging duration (Panel E), and idle
duration (Panel F). Weeks 1 to 3 correspond to October 2-8 (red), October 9-15 (gray), and October 16-22
(light gray). The Clean Air Day was the Wednesday, October 4 (week 1). "Session duration" denotes the
full plug-in duration; "charging duration" the duration of active charging; and "idle duration" the duration
parked but not charging.
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Figure A4: Charging activity on the Clean Air Day by time of day

Notes: This figure shows the charging activity of the Triton Chargers EV club during the first week of
October (October 2-8) by time of day. Shown are the number of daily charging sessions (Panel A), energy
consumed (Panel B), session cost (Panel C), session duration (Panel D), charging duration (Panel E), and
idle duration (Panel F). The Clean Air Day (denoted in red) was Wednesday, October 4. "Session duration"
denotes the full plug-in duration; "charging duration" the duration of active charging; and "idle duration"
the duration parked but not charging..
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A.8 Spring trial informational experiment

In June 2023, about four months before the start of our core experiment, we ran a “trial” in-
formational intervention, i.e. a scaled-down version of the full intervention we ran in the fall.
This scaled-down trial was shorter in duration and had fewer participants but used the same
methodology and structure: the Triton Chargers EV club enrollment survey, stratified black
randomization into treatment and control groups, and informational treatment consisting of
an email message about the climate benefits of daytime EV charging.

The experimental schedule of the spring trial experiment is documented in Figure A5.
On May 31, all participants received a welcome message to the Triton Chargers EV club.
The treatment and control groups received four informational prompts between June 6 and
June 14, as follows:

• [Treatment]: Thank you for being a Triton Charger and supporting research aimed at
improving the quality of charging services offered at UCSD. We are working to grow
our charging network and reduce automobile emissions as we transition to an electric
vehicle future. In San Diego in spring, charging a typical EV during daytime, when
solar power is plentiful, avoids 26 pounds of CO2 emissions compared to charging
during nighttime. This is equivalent to avoiding burning 1.4 gallons of gasoline with
every charge. In addition, scientists estimate that these avoided CO2 emissions prevent
$2.50 in costs to human welfare and the global economy.

• [Control] Thank you for being a Triton Charger and supporting research aimed at
improving the quality of charging services offered at UCSD. We are working to grow
our charging network as we transition to an electric vehicle future.

In addition, we conducted two surveys that request an odometer reading and updates about
drivers’ EV. These data allow for estimates of total charging activity.
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Figure A5: Experimental schedule for the spring trial experiment

Notes: This figure shows the schedule of the spring trial experiment. The treatment group receives a
bi-weekly email message ("Prompt 1 of 4", etc.). The control group receives a generic thank-you message.
Prompts are sent at 6.30 am on the specified day. All participants receive two odometer surveys.
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A.9 Charger scarcity experiment

Four months after our series of informational and financial experiments, we ran a follow-up
intervention over 13 days from February 5 to 17 to test for perceived scarcity in available
chargers. In this intervention, we varied the discount notification messages that drivers
received, such that messages indicated that different numbers of drivers would receive the
discount.

This follow-up experiment mimicked phase 1 of the financial experiment: the same
methodology, same participants (i.e., new club enrollees were excluded), stratified block
randomization into treatment arms that receive small or large discounts, notifications, and
odometer surveys. The experimental schedule of the spring trial experiment is documented
in Figure A6.

In total, the experiment consisted of four treatment arms. Two arms received the large
discount; two received the small. New to this experiment was that, within each discount
regime, half of participants received a discount notification email that indicated that all
drivers would receive the discount simultaneously, while the other half received a discount
notification message that indicated that no more than 33% of drivers would receive the
discount, as follows:

• [High scarcity]: Starting tomorrow, and for the next two weeks, you will receive an
extra discount on campus charging for being a member of the Triton Chargers EV club.
During these two weeks, we are making discounts available to you and fellow
Triton Chargers.

• [Low scarcity]: Starting tomorrow, and for the next two weeks, you will receive an
extra discount on campus charging for being a member of the Triton Chargers EV
club. During these two weeks, you and no more than 33% of Triton Chargers
will receive this discount.

Through this intervention, we explicitly sought to influence the percieved availability of
discounts, and thus the perceived likelihood of discount-induced scarcity for campus charging.
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Figure A6: Experimental schedule for the scarcity experiment

Notes: This figure shows the schedule of the charger scarcity experiment (February 5 to 17). The exper-
iment consists of two treatment arms: a financial and a induced scarcity intervention. During the financial
treatment, participants receive either a small or large discount on campus charging. During the scarcity
intervention, participants were told that 33% or all Triton chargers received the discounts.
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B Supplementary data

B.1 UCSD EV charging network

UCSD has installed three distinct types of EV parking stalls (Figure B1) across its campus
(Figure B2) that differ in charger type and parking rules (Table B1).35

1. EV-1 indicates a 1-hour parking limit at a DC fast charger (DCFC) that delivers 50–
125 kW, adds 75–185 miles of range per 30 minutes, and uses CHAdeMO or CCS plugs.
EV-1 spaces have no energy minimum, but drivers should initiate a charging session
and move their vehicles immediately after the session.

2. EV-4 indicates a 4-hour parking limit at a level-2 charger that delivers 6.6 kW, adds 21
miles of range per hour, and uses a J1772 plug. EV-4 spaces require a minimum 7-kWh
charge. Vehicles may remain in the stall (charging or idling) for up to four hours.

3. EV-12 indicates a 12-hour parking limit at a level-2 charger that delivers 1.2–6.6 kW
(some leverage circuit-sharing and operate at a continuous 3.3 kW), adds up to 21 miles
of range per hour, and uses a J1772 plug. EV-12 spaces require a minimum 10-kWh
charge. Drivers enter their planned departure time and desired miles of range to be
added; the charger optimizes power delivery to balance the needs of the EV and power
grid.

A valid UCSD parking permit or hourly parking payment is required to park in campus EV
charging stalls. Drivers may be cited if they park in an “EV Charging Only” stall but are
not actively charging or exceeding the posted time limit and are not actively charging. The
university plans to install an additional 760 Level-2 chargers and 35 DCFCs by year-end
2025.

35See https://transportation.ucsd.edu/commute/ev-stations.html for more information about EV charg-
ing stalls at UCSD.
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Figure B1: Type of parking stalls at UCSD

Notes: This figure displays the three types of parkings stalls at the UCSD campus.

Table B1: Parking stalls rules and features

Tariff

EV -1 EV -4 EV 12

Limit 1 hour 4 hours 12 hours
Ports 1 2 1
Power 50–125 kW 6.6 kW 1.2–6.6 kW
Range 75—185 mi per half hour 21 mi per hour 21 mi per hour
Plugs CHAdeMO, CCS J1772 J1772
Energy minimum None 7 kWh 10 kWh
Flex charging No No Yes

Notes: This table summarizes the parking rules and features at the UCSD campus.
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Figure B2: Parking zones and plazas at UCSD

Notes: This figure shows the five distinct parking zones and individual plazas and garages on the UCSD
campus. Blue-green denotes the Scripps Institution of Oceanography (SIO); purple, West Campus; orange,
East Campus; yellow, Graduate Housing; and red, Hillcrest Medical Center. The Hillcrest Campus is geo-
graphically separate from the Main Campus.
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B.2 SDG&E EV charging rates

Table B2: SDG&E residential EV charging rates (October–November 2023)

Price ($/kWh)

Summer (Jun-Oct) Winter (Nov-May)

Tariff Super-Off-Peak Off-peak On-peak Super-Off-Peak Off-peak On-peak

EV -TOU .285 .497 .832 .276 .464 .527
EV -TOU-2 .285 .497 .832 .276 .464 .527
EV -TOU-5 .154 .481 .816 .145 .448 .511

Notes: This table presents SDG&E residential rates by tariff period (super-off-peak, off-peak, and on-
peak) for the summer and winter seasons. Super-off-peak hours are 12am - 6am; off-peak hours, 6am - 4pm
and 9pm - 12am; and on-peak hours, 4pm - 9pm. The EV-TOU tariff requires a separate EV meter, in-
stalled by an electrician at the homeowner’s expense, that tracks EV electricity use separately, while the
house remains on a tiered rate. EV-TOU-2 and EV-TOU-5 use an existing household smart meter to track
both home and EV electricity use. EV-TOU-5 has lower volumetric rates (the lowest rates for overnight
EV home charging) along with a fixed monthly fee of $16. Homeowners with household solar PV or battery
storage might have different rates.
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Table B3: SDG&E public retail EV charging rates (October–November 2023)

Time of day Price ($/kWh)

12:01 - 01:00 .56
01:01 - 02:00 .28
02:01 - 03:00 .28
03:01 - 04:00 .28
04:01 - 05:00 .28
05:01 - 06:00 .28
06:01 - 07:00 .29
07:01 - 08:00 .28
08:01 - 09:00 .26
09:01 - 10:00 .25
10:01 - 11:00 .24
11:01 - 12:00 .24
12:01 - 13:00 .24
13:01 - 14:00 .25
14:01 - 15:00 .25
15:01 - 16:00 .27
16:01 - 17:00 .29
17:01 - 18:00 .31
18:01 - 19:00 .32
19:01 - 20:00 .31
20:01 - 21:00 .30
21:01 - 22:00 .30
22:01 - 23:00 .29
23:01 - 24:00 .29

Notes: This table presents mean
hourly prices for SDGE’s Power Your
Drive public charging program during
the first and second financial treat-
ment (October 1 - November 30). Re-
tail rates reflect wholesale electricity
prices, which change hourly, and are
available at public chargers participat-
ing in the Power Your Drive program.
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B.3 Power grid carbon intensity

Table B4: Average carbon intensity (gCO2/MJ) of the California power grid

Season

Time 2022-Q1 2022-Q2 2022-Q3 2022-Q4

12:01 - 01:00 81.66 82.48 85.43 90.97
01:01 - 02:00 81.62 80.68 82.43 87.1
02:01 - 03:00 81.62 80.64 81.82 84.95
03:01 - 04:00 81.62 80.61 81.59 84.52
04:01 - 05:00 81.62 81.79 81.47 86.37
05:01 - 06:00 87.03 90.14 83.5 97.52
06:01 - 07:00 108.88 88.8 94.67 119.41
07:01 - 08:00 107.18 28.24 90.9 118
08:01 - 09:00 63.59 2.28 57.31 97.07
09:01 - 10:00 29.08 1.68 7.05 38.86
10:01 - 11:00 0.41 3 12.26 31.13
11:01 - 12:00 0 47.2 20.61 7.57
12:01 - 13:00 0 50.24 30.4 9.03
13:01 - 14:00 0 52.09 42.67 11.27
14:01 - 15:00 0 55.64 52.49 40.08
15:01 - 16:00 28.52 60.37 99.35 74.02
16:01 - 17:00 63.34 26 104.51 123.7
17:01 - 18:00 105.37 30,.28 129.55 144.16
18:01 - 19:00 136.85 75.05 141.37 147.13
19:01 - 20:00 131.9 146.13 148.42 143.16
20:01 - 21:00 121.95 147.19 140.49 136.57
21:01 - 22:00 101.6 124.86 119.97 122.34
22:01 - 23:00 87.84 94.26 102.34 108.95
23:01 - 24:00 82.13 84.41 91.01 95.2

Notes: The table presents the California Air Resources Board
(CARB) Low Carbon Fuel Standard (LCFS) quarterly carbon inten-
sity values, in gCO2/MJ, for smart charging and electrolysis in 2022.
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C Supplementary descriptive statistics

C.1 Triton Charger EV club enrollment survey results
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Table C2: Balance table

Information Discount 1 Discount 2

Treated Control Large Small Large-large Large-small

A.Demographics
Age 38.58 37.92 38.48 37.79 38.35 38.61

(13.33) (12.43) (12.65) (13.34) (12.36) (12.36)
[.42] [.4] [.04]

Share male (%) 0.50 0.57 0.58 0.45 0.55 0.61
(.5) (.5) (.49) (.5) (.5) (.5)

[3.55] [9.79] [1.45]
Income ($ ’000) 138.39 133.03 136.69 133.82 137.09 136.28

(66.21) (66.97) (66.94) (66) (66.45) (66.45)
[.9] [.23] [.01]

Years of education 17.32 17.04 17.40 16.74 17.47 17.33
(3.14) (3.04) (3.06) (3.11) (3.17) (3.17)

[1.36] [6.34] [.21]
Days on campus per week 3.23 3.29 3.28 3.22 3.28 3.27

(1.75) (1.76) (1.76) (1.74) (1.76) (1.76)
[.16] [.13] [0]

B.Vehicle attributes
Vehicle age (years) 2.40 2.37 2.44 2.27 2.50 2.39

(2.87) (2.29) (2.69) (2.4) (2.68) (2.68)
[.02] [.67] [.15]

Battery electric (%) 0.76 0.77 0.75 0.80 0.79 0.70
(.43) (.42) (.44) (.4) (.41) (.41)

[.2] [1.92] [4.35]
Odometer reading (’000 miles) 31.56 30.59 31.77 29.79 32.56 30.93

(31.5) (27.17) (28.9) (30.34) (27.87) (27.87)
[.12] [.46] [.23]

C.Commuting and charging habits
Daily mileage (miles) 34.27 38.38 36.53 35.93 37.74 35.10

(27.81) (30.28) (26.94) (32.66) (29.53) (29.53)
[1.79] [.03] [.55]

Home charger (%) 0.59 0.58 0.59 0.58 0.59 0.60
(.49) (.49) (.49) (.5) (.49) (.49)

[.08] [.13] [.01]
Charging price ($ per kWh) 0.18 0.18 0.18 0.19 0.17 0.19

(.12) (.12) (.12) (.12) (.12) (.12)
[.35] [.65] [1.78]

Number of Observation 315 314 418 211 210 208

Notes: The table presents the average values and balance tests on driver demographics (Panel A), vehicle attributes
(Panel B), commuting and charging habits (Panel C) for treated and control groups of the informational, first and sec-
ond financial intervention. Robust standard errors are in parentheses. ANOVA p-values from one-way ANOVA tests for
differences in means across groups are in backets. Driver data are from the Triton Chargers EV club enrollment survey
prior to the experiment. We report averages for age, income, and education, while our survey data asked respondents
to select the appropriate bracket for each.
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C.2 UCSD EV network operation

To calculate the daily “effective” network utilization that drivers experience on campus, we
classify chargers daily as either operational, non-operational, or out-of-service (Figure C1).
A charger is “operational” if it reported at least one successful charging session on a given
day. A charger is “non-operational” if it recorded glitch sessions (i.e., those that last fewer
than five minutes or supply fewer than 0.5 kWh of energy). A charge is “out-of-service” if it
reports numerous successive days without activity: for a given day without activity, if either
the previous or following day saw a successful session, the charger is operational. If both
these days saw only glitches, the charger is non-operational. If the charger does not report
activity for ten consecutive days, it is out-of-service.

Figure C1: Network operation flowchart

Notes: This figure shows the classification of charger designations into operational, non-operational, and
out-of-service.

Figures C2 and C3 report charger designations by day for PowerFlex and ChargePoint,
respectively, during the study period (October 4 – November 19). PowerFlex chargers show
variability across parking garages. The Athena parking structure rarely has more than one
non-operational station and none out-of-service. In contrast, a few charge ports in the Gilman
and Hopkins parking structures were mostly non-operational. Similarly for ChargePoint
garages, the Gilman chargers show a relatively high non-operational frequency and a larger
share of chargers overall reported no charge attempts.

32



Appendix Garg, Hanna, Myers, Tebbe & Victor

Athena

Gilman

Pangea

Hopkins

0 5 10 15 20 25 30 35 40 45
Days Relative to Treatment

Operational Not operable Out-of-service

Figure C2: PowerFlex charger designation by day

Notes: This figure shows the daily designation for each PowerFlex charger: operational (green), non-
operational (red), and out-of-service (black). Each row is a single charge port over time, while each column
is a single day across all chargers. The chargers are grouped by the parking garage.
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West Campus

East

Grads
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Campus Svcs
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Campus Pt

Med Center

Mesa Nuevo

Nuevo West

Arbor
Bachman

0 5 10 15 20 25 30 35 40 45
Days relative to treatment

Operational Not operable Out-of-service

Figure C3: ChargePoint charger designation by day

Notes: This figure shows the daily designation for each ChargePoint charger: operational (green), non-
operational (red), and out-of-service (black). Each row is a single charge port over time, while each column
is a single day across all chargers. Stations are ordered by garage (on the left y-axis), and garages are or-
dered by region of campus (on the right y-axis).

Figures C4 report the network-wide share of PowerFlex and ChargePoint chargers that
were operational, non-operational, or out-of-service during the study period. For PowerFlex,

33



Appendix Garg, Hanna, Myers, Tebbe & Victor

non-operational and out-of-service chargers compose about 10% and 2% of total chargers;
about 90% were thus operational. For ChargePoint, we observe higher out-of-service rate
and more moderate non-operational frequency; roughly 86% of ChargePoint ports were op-
erational on any given day. These estimates of network congestion represent a lower bound
because they neglect “stall-napping”—occasions when vehicles occupy a charging stall with-
out actually charging yet reduce charger availability all the same.
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100%
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PowerFlex

0%

20%

40%

60%

80%

100%

0 5 10 15 20 25 30 35 40 45
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Days relative to treatment

Operational Not operable Out-of-service

Figure C4: Designation share

Notes: This figure shows the network-wide share of PowerFlex and ChargePoint chargers that were oper-
ational (green), non-operational (red), or out-of-service (black) during the study period.
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C.3 UCSD EV network utilization

0

20

40

60

80

100

D
ai

ly
 c

ha
rg

er
 u

til
iz

at
io

n 
(%

)
Information Discount 1 Discount 2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
Days relative to first treatment

PowerFlex ChargePoint

Figure C5: Network utilization by day

Notes: This figure shows charging network utilization for PowerFlex (red) and ChargePoint (blue) charg-
ers by day in the experiment. Day 0 denotes the first day of the informational treatment. We define charger
utilization as the percentage of chargers used in a given day relative to all chargers used during the experi-
ment period (October 4 - November 19). 100 indicates that all chargers were used at least once during that
day. Vertical dashed lines denote the start of each intervention; thick gray lines denote days on which the
informational prompt was sent. We exclude chargers that are non-operational and out-of-service from the
network utilization (Section C.2).
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Figure C6: Network utilization by day of the week

Notes: This figure shows hourly utilization of PowerFlex and ChargePoint chargers for different days of
the week during the experiment period. We define hourly charger utilization as the percentage of chargers
used in a given hour relative to all chargers used during the experiment period.
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C.4 Charging sessions glitches
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Figure C7: Charging session glitch rate

Notes: The figure displays the percentage of charging sessions experiencing glitches for PowerFlex and
ChargePoint chargers by day. Day 0 denotes the first day of the informational treatment. We define a
"glitched" session as one that lasts fewer than 5 minutes or consumes less than .5 kWh. Vertical lines denote
the start of each intervention; thick gray lines denote days on which the informational prompt was sent.
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Figure C8: Probability of campus charging by attempts

Notes: This figure shows the effective probability of campus charging by the number of attempts for Pow-
erFlex (red) and ChargePoint (blue). The size of the marker reflects the number of charging sessions, with
bins of n=1-10, 11-100, 101-1,000, and 1,000+.
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C.5 Timing of charging activities

(a) Energy consumed

(b) Session cost

(c) Session duration
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(d) Number of charging sessions

Figure C9: Total charging behavior by hour of the day

Notes: This figure shows the average charging activities per driver by time of the day. Shown are en-
ergy consumed per session (A), session cost (B), session duration (C), and number of charging sessions (D).
Data are the average, by hour, of all days in the respective intervention period The three columns of panels
(from left to right) show results for the informational intervention, financial intervention (L vs. S discount
treatments), and analysis of habit formation (LL vs. LS discount treatments).
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(e) Network utilization

(f) Charger unreliability

(g) Incentive-induced scarcity
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(h) Commute frequency

(i) Access to home charger

Figure C10: Energy consumed by hour of the day and mechanisms

Notes: The figure displays the average energy consumed for treated drivers, by hour of the day, over the
course of each intervention – the informational (left), first financial (middle), and second financial treatment
(right). We show average energy consumed per driver for five mechanisms: Network utilization (Panel a),
session glitch rate (Panel b), incentive-induced scarcity (Panel c), commute frequency (Panel d), and access
to home charging (Panel e). To calculate total energy delivered, we assume that energy is dispensed to the
EV uniformly while actively charging. Light yellow and red bars refer to periods with low and high average
carbon intensity of California’s power grid.

42



Appendix Garg, Hanna, Myers, Tebbe & Victor

D Additional regression results

D.1 Effect on average charging behavior
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D.2 Effect on total charging behavior
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Appendix Garg, Hanna, Myers, Tebbe & Victor

D.3 Effect on the timing of charging behavior

Table D11: Effect on the timing of charging by utilization

Timing of initiated charging session

(1) 21-5 (2) 5-7 (3) 7-10 (4) 10-16 (5) 16-21

A.Informational prompt
Low Network Utilization -.273* -.191 .634* -.163 -.235

(.162) (.155) (.338) (.366) (.189)
Medium Network Utilization .120 -.189 .756* .168 .353

(.103) (.193) (.447) (.302) (.217)
High Network Utilization .022 -.165 -.723 -.468 .026

(.099) (.228) (.462) (.353) (.257)

B.Financial incentive 1
Low Network Utilization .067 .078 -.073 -.435* -.434***

(.074) (.084) (.248) (.225) (.152)
Medium Network Utilization .225** -.004 -.290 .078 .055

(.096) (.091) (.281) (.234) (.147)
High Network Utilization .094 .258* -.664* -.062 .132

(.071) (.153) (.337) (.229) (.185)

C.Financial incentive 2
Low Network Utilization .033 -.063 -.228 .068 .181

(.135) (.122) (.264) (.275) (.167)
Medium Network Utilization .111 -.347** .316 .870** .580**

(.134) (.167) (.382) (.360) (.287)
High Network Utilization .004 -.092 -.254 .114 .493*

(.082) (.281) (.276) (.285) (.285)

Notes: This table presents the regression estimates on the timing of charging for the informa-
tional (Panel A), first financial (Panel B), and second financial treatment (Panel C) by vehicle type.
Low network utilization refers to less than 60% of weekday utilization at the most used garage by 9
am, medium network utilization to 60-75%, and high network utilization above 75%. The outcome
variables indicate the number of charging sessions during five distinct periods: overnight (21:00 -
4:59) (column 1), early morning (5:00 - 6:59) (column 2), morning (7:00 - 9:59) (column 3), mid-
day (10:00 - 15:59) (column 4), and evening (16:00 - 20:59) (column 5) periods. All regressions in-
clude individual demographic, vehicle, charging infrastructure, motivational control variables, and
vehicle-fixed effects. The mean outcome variable is reported below the coefficients. The treatment
period consists of three phases: informational (Oct 4-23), first financial (Oct 24-Nov 5), and second
financial treatment (Nov 6-19). Robust standard errors, clustered by individuals, are in parenthe-
ses. *, **, ***: statistically significant with 90%, 95%, and 99% confidence, respectively.
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Table D12: Effect on the timing of charging by location

Timing of initiated charging session

(1) 21-5 (2) 5-7 (3) 7-10 (4) 10-16 (5) 16-21

A.Informational prompt
Sio .029 .070 -.142 .080 .047

(.029) (.074) (.143) (.082) (.041)
West Campus -.351 -.396 1.185 .250 -.223

(.251) (.304) (1.067) (.442) (.289)
East Campus -.116 -1.020 .134 .091 .342

(.149) (.757) (.997) (.233) (.533)
Graduate Housing -.087 -.266 .110 -.420 -.140

(.065) (.332) (.218) (.548) (.135)

B.Financial incentive 1
Sio .000 -.066 -.364 -.096 -.063

(.) (.064) (.225) (.073) (.058)
West Campus .042 -.163 -.116 .106 -.043

(.182) (.283) (.854) (.305) (.226)
East Campus .109* .939*** .135 .047 .012

(.059) (.361) (.486) (.142) (.325)
Graduate Housing .245 .000 .128 -.448 .028

(.210) (.) (.249) (.335) (.073)

C.Financial incentive 2
Sio .000 .002 .057 .023 .000

(.) (.014) (.105) (.069) (.)
West Campus .158 -.255 -.546 .186 .441

(.163) (.363) (.927) (.467) (.325)
East Campus .000 .046 -.199 .143 .751*

(.) (.743) (.547) (.131) (.453)
Graduate Housing .337 .155 .294 .026 .284*

(.520) (.115) (.311) (.198) (.171)

Notes: This table presents the regression estimates on the timing of charging for
the informational (Panel A), first financial (Panel B), and second financial treatment
(Panel C) by vehicle type. The outcome variables indicate the number of charging
sessions during five distinct periods: overnight (21:00 - 4:59) (column 1), early morn-
ing (5:00 - 6:59) (column 2), morning (7:00 - 9:59) (column 3), midday (10:00 - 15:59)
(column 4), and evening (16:00 - 20:59) (column 5) periods. All regressions include in-
dividual demographic, vehicle, charging infrastructure, motivational control variables,
and vehicle-fixed effects. The mean outcome variable is reported below the coefficients.
The treatment period consists of three phases: informational (Oct 4-23), first financial
(Oct 24-Nov 5), and second financial treatment (Nov 6-19). Robust standard errors,
clustered by individuals, are in parentheses. *, **, ***: statistically significant with
90%, 95%, and 99% confidence, respectively.
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Table D13: Effect on the timing of charging by glitch rate

Timing of initiated charging session

(1) 21-5 (2) 5-7 (3) 7-10 (4) 10-16 (5) 16-21

A.Informational prompt
Low Glitch Rate -.173 -.331* -.180 -.107 -.091

(.205) (.189) (.488) (.386) (.310)
Medium Glitch Rate -.098 -.087 .099 -.228 .020

(.099) (.156) (.305) (.275) (.161)
High Glitch Rate .067 -.287 1.269** -.029 .094

(.155) (.184) (.610) (.366) (.256)

B.Financial incentive 1
Low Glitch Rate .288*** .023 -.541* -.271 -.055

(.104) (.145) (.309) (.267) (.187)
Medium Glitch Rate .120* .152* -.304 -.176 -.084

(.062) (.089) (.227) (.178) (.117)
High Glitch Rate -.045 .030 .027 -.145 -.394

(.104) (.135) (.401) (.257) (.276)

C.Financial incentive 2
Low Glitch Rate .020 -.255 -.133 .672** .575**

(.094) (.223) (.355) (.334) (.265)
Medium Glitch Rate .119 -.118 -.178 .418 .514**

(.120) (.156) (.236) (.261) (.213)
High Glitch Rate -.077 -.145 .137 -.189 -.266

(.116) (.176) (.422) (.341) (.208)

Notes: This table presents the regression estimates on the timing of charging for the
informational (Panel A), first financial (Panel B), and second financial treatment (Panel
C) by vehicle type. Low glitch rates refer to less than 10% of weekday charging sessions
experienced a glitch at the most used garage by 9 am, medium glitch rates to 10-20%,
and high network utilization above 25%. The outcome variables indicate the number of
charging sessions during five distinct periods: overnight (21:00 - 4:59) (column 1), early
morning (5:00 - 6:59) (column 2), morning (7:00 - 9:59) (column 3), midday (10:00 - 15:59)
(column 4), and evening (16:00 - 20:59) (column 5) periods. All regressions include indi-
vidual demographic, vehicle, charging infrastructure, motivational control variables, and
vehicle-fixed effects. The mean outcome variable is reported below the coefficients. The
treatment period consists of three phases: informational (Oct 4-23), first financial (Oct
24-Nov 5), and second financial treatment (Nov 6-19). Robust standard errors, clustered
by individuals, are in parentheses. *, **, ***: statistically significant with 90%, 95%, and
99% confidence, respectively.
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Table D14: Effect on the timing of charging by charger vendor

Timing of initiated charging session

(1) 21-5 (2) 5-7 (3) 7-10 (4) 10-16 (5) 16-21

A.Informational prompt
PowerFlex -.018 -.051 .151 .045 .035

(.015) (.055) (.137) (.035) (.030)
ChargePoint -.030 -.073 .052 -.094 -.018

(.043) (.064) (.121) (.130) (.078)

B.Financial incentive 1
PowerFlex -.001 .036 -.023 .008 .003

(.013) (.036) (.092) (.021) (.018)
ChargePoint .062** .028 -.053 -.051 -.049

(.028) (.036) (.101) (.088) (.059)

C.Financial incentive 2
PowerFlex .008 -.052 .055 .023 .036

(.010) (.062) (.091) (.030) (.032)
ChargePoint .032 -.009 -.057 .171 .169*

(.061) (.054) (.112) (.125) (.089)

Notes: This table presents the regression estimates on the timing of charging for
the informational (Panel A), first financial (Panel B), and second financial treat-
ment (Panel C) by charger vendor. The outcome variables indicate the number of
charging sessions during five distinct periods: overnight (21:00 - 4:59) (column 1),
early morning (5:00 - 6:59) (column 2), morning (7:00 - 9:59) (column 3), midday
(10:00 - 15:59) (column 4), and evening (16:00 - 20:59) (column 5) periods. All
regressions include individual demographic, vehicle, charging infrastructure, mo-
tivational control variables, and vehicle-fixed effects. The mean outcome variable
is reported below the coefficients. Robust standard errors, clustered by individ-
uals, are in parentheses. *, **, ***: statistically significant with 90%, 95%, and
99% confidence, respectively.
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Table D15: Effect on the timing of charging by scarcity

Timing of initiated charging session

(1) 21-5 (2) 5-7 (3) 7-10 (4) 10-16 (5) 16-21

A. Induced scarcity .064 -.058 -.064 .049 .090
(.044) (.058) (.124) (.093) (.063)

B. Financial incentive .076* .036 -.010 .026 .021
(.040) (.062) (.117) (.092) (.067)

C. Scarcity x large discount .118* -.015 -.117 .054 .054
(.065) (.070) (.126) (.110) (.068)

Mean Dep. Var. .07 .15 .6900000000000001 .42 .24
Observation 629 629 629 629 629

Notes: This table presents the regression estimates on the timing of charging for the informational (Panel
A), first financial (Panel B), and second financial treatment (Panel C) by vehicle type. Low network utilization
refers to less than 60% of weekday utilization at the most used garage by 9 am, medium network utilization
to 60-75%, and high network utilization above 75%. The outcome variables indicate the number of charging
sessions during five distinct periods: overnight (21:00 - 4:59) (column 1), early morning (5:00 - 6:59) (column
2), morning (7:00 - 9:59) (column 3), midday (10:00 - 15:59) (column 4), and evening (16:00 - 20:59) (column
5) periods. All regressions include individual demographic, vehicle, charging infrastructure, motivational con-
trol variables, and vehicle-fixed effects. The mean outcome variable is reported below the coefficients. The
treatment period consists of three phases: informational (Oct 4-23), first financial (Oct 24-Nov 5), and second
financial treatment (Nov 6-19). Robust standard errors, clustered by individuals, are in parentheses. *, **,
***: statistically significant with 90%, 95%, and 99% confidence, respectively.
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Table D16: Effect on the timing of charging by commute frequency

Timing of initiated charging session

(1) 21-5 (2) 5-7 (3) 7-10 (4) 10-16 (5) 16-21

A.Informational prompt
Infrequent Commute .009 -.073 -.097 .154 .027

(.073) (.081) (.200) (.175) (.127)
Frequent Commute -.076 -.148 .345 -.146 .012

(.065) (.098) (.219) (.176) (.108)

B.Financial incentive 1
Infrequent Commute .002 -.017 -.105 .088 -.115

(.044) (.050) (.155) (.125) (.077)
Frequent Commute .092** .106 -.061 -.111 -.009

(.038) (.066) (.161) (.116) (.085)

C.Financial incentive 2
Infrequent Commute -.084 -.090 .055 .179 -.018

(.078) (.078) (.171) (.159) (.138)
Frequent Commute .100 -.047 -.030 .202 .313***

(.092) (.106) (.170) (.166) (.113)

Notes: This table presents the regression estimates on the timing of charging for the
informational (Panel A), first financial (Panel B), and second financial treatment (Panel
C) by commute distance. An infrequent commuter comes to the campus less than three
times; a frequent commuter more than three times. The outcome variables indicate the
number of charging sessions during five distinct periods: overnight (21:00 - 4:59) (column
1), early morning (5:00 - 6:59) (column 2), morning (7:00 - 9:59) (column 3), midday
(10:00 - 15:59) (column 4), and evening (16:00 - 20:59) (column 5) periods. All regres-
sions include individual demographic, vehicle, charging infrastructure, motivational con-
trol variables, and vehicle-fixed effects. The mean outcome variable is reported below the
coefficients. Robust standard errors, clustered by individuals, are in parentheses. *, **,
***: statistically significant with 90%, 95%, and 99% confidence, respectively.
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Table D17: Effect on the timing of charging by home charging access

Timing of initiated charging session

(1) 21-5 (2) 5-7 (3) 7-10 (4) 10-16 (5) 16-21

A.Informational prompt
Home Charger -.094 -.126 .155 -.081 -.051

(.076) (.112) (.235) (.171) (.090)
No Home Charger .022 -.120 .274 -.000 .120

(.060) (.104) (.264) (.225) (.178)

B.Financial incentive 1
Home Charger .044 .065 -.045 .004 -.076

(.045) (.069) (.161) (.120) (.070)
No Home Charger .086* .062 -.120 -.108 -.004

(.045) (.068) (.208) (.159) (.135)

C.Financial incentive 1
Home Charger .073 -.017 -.055 .094 .076

(.095) (.103) (.160) (.134) (.082)
No Home Charger -.010 -.125 .076 .342 .394**

(.062) (.101) (.215) (.238) (.184)

Notes: This table presents the regression estimates on the timing of charging for
the informational (Panel A), first financial (Panel B), and second financial treatment
(Panel C) depending on whether participants have access to home charging. The out-
come variables indicate the number of charging sessions during five distinct periods:
overnight (21:00 - 4:59) (column 1), early morning (5:00 - 6:59) (column 2), morning
(7:00 - 9:59) (column 3), midday (10:00 - 15:59) (column 4), and evening (16:00 - 20:59)
(column 5) periods. All regressions include individual demographic, vehicle, charging
infrastructure, motivational control variables, and vehicle-fixed effects. The mean out-
come variable is reported below the coefficients. Robust standard errors, clustered by
individuals, are in parentheses. *, **, ***: statistically significant with 90%, 95%, and
99% confidence, respectively.
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Table D18: Effect on the timing of charging by typical charging rate paid

Timing of initiated charging session

(1) 21-5 (2) 5-7 (3) 7-10 (4) 10-16 (5) 16-21

A.Informational prompt
Low Charge Rate -.073 -.035 -.242 .054 -.200*

(.063) (.109) (.218) (.208) (.117)
Medium Charge Rate -.063 -.085 .248 -.035 -.004

(.053) (.096) (.221) (.168) (.091)
High Charge Rate .017 -.317** .511 -.189 .287

(.075) (.134) (.319) (.243) (.201)

B.Financial incentive 1
Low Charge Rate -.022 .050 -.294 -.220* -.172*

(.034) (.074) (.209) (.114) (.092)
Medium Charge Rate .043 .061 -.016 .021 -.030

(.038) (.055) (.143) (.110) (.074)
High Charge Rate .216** .088 -.029 -.054 .046

(.090) (.137) (.217) (.162) (.122)

C.Financial incentive 2
Low Charge Rate -.045 -.047 -.102 .054 .001

(.046) (.118) (.176) (.164) (.076)
Medium Charge Rate .083 -.091 .003 .311* .200

(.097) (.081) (.168) (.176) (.131)
High Charge Rate .002 .017 .104 -.011 .469**

(.064) (.232) (.273) (.197) (.229)

Notes: This table presents the regression estimates on the timing of charging for the in-
formational (Panel A), first financial (Panel B), and second financial treatment (Panel C)
by the typical rate that participants pay for EV charging. Low rates are those <$.17/kWh;
medium rates, <$.17/kWh and >$.23/kWh; and high rates, >$.23/kWh.The outcome vari-
ables indicate the number of charging sessions during five distinct periods: overnight (21:00
- 4:59) (column 1), early morning (5:00 - 6:59) (column 2), morning (7:00 - 9:59) (column
3), midday (10:00 - 15:59) (column 4), and evening (16:00 - 20:59) (column 5) periods. All
regressions include individual demographic, vehicle, charging infrastructure, motivational
control variables, and vehicle-fixed effects. The mean outcome variable is reported below
the coefficients. Robust standard errors, clustered by individuals, are in parentheses. *,
**, ***: statistically significant with 90%, 95%, and 99% confidence, respectively.
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