Context	Theory	Estimation	Results	Compute	
000000	000000	0000000	0000000	0000	

Road Pricing with Multiple Policy Goals: The Effect on Car Ownership, Driving, and Commuting

Peter Nilsson (*IIES*) Matthew Tarduno (*Harvard*) Sebastian Tebbe (*GPS UCSD*)

September 10, 2023

Theory

Context

imation

Results

20

Conclusic O

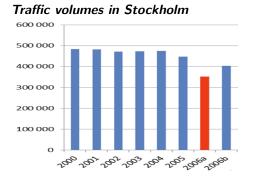
Tackling multiple negative externalities

(a) Plastic waste reduction

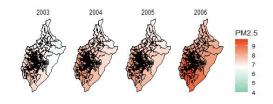
(c) Land degradation prevention

(b) Air pollution control

(d) Animal farming

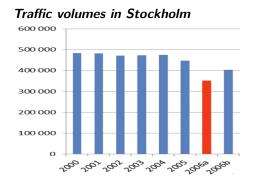


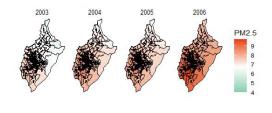
Nilsson, Tarduno & Tebbe


 Context
 Theory
 Estimation
 Results
 Compute
 Conclusion

 0●0000
 000000
 0000000
 000000
 00000
 0
 0

Local air quality and traffic


Emission levels in Stockholm


 Context
 Theory
 Estimation
 Results
 Compute
 Conclusion

 0●0000
 0000000
 0000000
 000000
 0000
 0

Local air quality and traffic

Emission levels in Stockholm

Purpose of Stockholm congestion trial in 2006 (*Stockholmsförsöket*):

"I syfte att minska trängseln, öka framkomligheten och förbättra miljön genomfördes det så kallade Stockholmsförsöket."

"In order to reduce congestion, increase accessibility and improve the environment, the so-called Stockholm trial was carried out."

Context	Theory	Estimation	Results	Compute	
00●000	000000	0000000	0000000	0000	
Theory					

Externalities:

- Emission externalities differ by vehicle type
- Congestion externalities differ by location
 - \rightarrow Substitution across congestion and emission (*Imperfection I*)
 - → Substitution towards unpriced roads (Imperfection II)

Context	Theory	Estimation	Results	Compute	
00●000	000000	0000000	0000000	0000	
Theory					

Externalities:

- Emission externalities differ by vehicle type
- Congestion externalities differ by location
 - \rightarrow Substitution across congestion and emission (Imperfection I)
 - \rightarrow Substitution towards unpriced roads (Imperfection II)

Behavioral responses to congestion zone (CZ):

- **1**. Fleet decomposition (*Motive I*):
 - \rightarrow Sell internal combustion engine (ICE) car
 - $\rightarrow\,$ Adopt exempted alternative fuel (AF) car
- 2. Number of trips (*Motive II*):
 - $\rightarrow\,$ Reduce number of trips in ICE cars
 - $\rightarrow\,$ Increase number of trips in AF cars
- 3. Commuting distance (Motive III):
 - $\rightarrow\,$ Move into CZ or relocate to workplace outside CZ

Context	Theory	Estimation	Results	Compute	
000●00	000000	00000000	0000000	0000	
Contribu	tions				

▶ We provide a theoretical and empirical framework for calculating congestion charges

Context	Theory	Estimation	Results	Compute	
000●00	000000	0000000	0000000	0000	
Contribu	tions				

▶ We provide a theoretical and empirical framework for calculating congestion charges

Ancillary contribution:

- 1. Optimal tax formula:
 - \rightarrow Addresses dual challenge of *emission* and *congestion externalities*

Context	Theory	Estimation	Results	Compute	
000●00	000000	00000000	0000000	0000	
Contribu	tions				

▶ We provide a theoretical and empirical framework for calculating congestion charges

Ancillary contribution:

- 1. Optimal tax formula:
 - $\rightarrow\,$ Addresses dual challenge of emission and congestion externalities
 - \rightarrow Considers 3 margins of response: vehicle adoption, driving, and location choices

Context	Theory	Estimation	Results	Compute	
000●00	000000	00000000	0000000	0000	
Contribu	tions				

▶ We provide a theoretical and empirical framework for calculating congestion charges

Ancillary contribution:

- 1. Optimal tax formula:
 - $\rightarrow\,$ Addresses dual challenge of emission and congestion externalities
 - \rightarrow Considers 3 margins of response: *vehicle adoption, driving,* and *location choices*

2. Identification:

ightarrow We exploit variation in individuals' exposure to tolls on the road section between home and work

Context	Theory	Estimation	Results	Compute	
000●00	000000	00000000	0000000	0000	
Contribu	tions				

▶ We provide a theoretical and empirical framework for calculating congestion charges

Ancillary contribution:

- 1. Optimal tax formula:
 - $\rightarrow\,$ Addresses dual challenge of emission and congestion externalities
 - \rightarrow Considers 3 margins of response: vehicle adoption, driving, and location choices

2. Identification:

ightarrow We exploit variation in individuals' exposure to tolls on the road section between home and work

3. Policy implication:

 $\rightarrow\,$ We decompose congestion charges by motives and externalities

Context	Theory	Estimation	Results	Compute	
0000●0	000000	00000000	0000000	0000	
Preview of	of results				

Empirical findings:

- ▶ Individuals exposed to congestion charges on their way to work:
 - $\rightarrow\,$ are .65 percentage points more likely to adopt an AF car
 - $\rightarrow\,$ are .69 percentage points less likely to adopt an ICE car

Context	Theory	Estimation	Results	Compute	
0000●0	000000	0000000	0000000	0000	
	с I.				

Preview of results

Empirical findings:

- Individuals exposed to congestion charges on their way to work:
 - $\rightarrow\,$ are .65 percentage points more likely to adopt an AF car
 - $\rightarrow\,$ are .69 percentage points less likely to adopt an ICE car
 - $\rightarrow\,$ increase CZ trips by 5.7 and non-CZ by 1.1 in AF cars
 - $\rightarrow\,$ decrease CZ trips by 14.6 and non-CZ trips by 1.5 in ICE cars

Context	Theory	Estimation	Results	Compute	
0000●0	000000	0000000	0000000	0000	
	C 1.				

Preview of results

Empirical findings:

- ▶ Individuals exposed to congestion charges on their way to work:
 - ightarrow are .65 percentage points more likely to adopt an AF car
 - $\rightarrow\,$ are .69 percentage points less likely to adopt an ICE car
 - $\rightarrow\,$ increase CZ trips by 5.7 and non-CZ by 1.1 in AF cars
 - $\rightarrow\,$ decrease CZ trips by 14.6 and non-CZ trips by 1.5 in ICE cars
 - \rightarrow decrease commute distance by .086 kilometers
 - $\rightarrow\,$ decrease outside commute distance by .014 kilometers

Context	Theory	Estimation	Results	Compute	
0000●0	000000	0000000	0000000	0000	
.	C 1				

Preview of results

Empirical findings:

- Individuals exposed to congestion charges on their way to work:
 - ightarrow are .65 percentage points more likely to adopt an AF car
 - $\rightarrow\,$ are .69 percentage points less likely to adopt an ICE car
 - $\rightarrow\,$ increase CZ trips by 5.7 and non-CZ by 1.1 in AF cars
 - $\rightarrow\,$ decrease CZ trips by 14.6 and non-CZ trips by 1.5 in ICE cars
 - \rightarrow decrease commute distance by .086 kilometers
 - $\rightarrow\,$ decrease outside commute distance by .014 kilometers

Policy implications:

- ► Congestion charge equals €10.44 per crossing (€.6 per kilometer)
 - → Congestion externalities account for 89% (€9.3)

Context	Theory	Estimation	Results	Compute	
00000●	000000	00000000	0000000	0000	
Literature	e review				

This work speaks to three strands of literature:

- 1. Behaviorally-motivated taxes
 - → Taxation with behavioral agents (Farhi & Gabaix, 2020), internalities (Gerritsen, 2016; Allcott *et al.*, 2019), inattention (Chetty *et al.*, 2009, Koszegi & Seidl, 2013; Schwartzstein, 2014), self-control (Gruber & Koszegi, 2004; O'Donoghue & Rabin, 2006), social reputation (Benabou & Tirole, 2011)
 - → Congestion zone charges (Mun et al., 2003; Verhoef, 2005)

Context	Theory	Estimation	Results	Compute	
00000●	000000	00000000	0000000	0000	
Literature	e review				

This work speaks to three strands of literature:

- 1. Behaviorally-motivated taxes
 - → Taxation with behavioral agents (Farhi & Gabaix, 2020), internalities (Gerritsen, 2016; Allcott *et al.*, 2019), inattention (Chetty *et al.*, 2009, Koszegi & Seidl, 2013; Schwartzstein, 2014), self-control (Gruber & Koszegi, 2004; O'Donoghue & Rabin, 2006), social reputation (Benabou & Tirole, 2011)
 - → Congestion zone charges (Mun et al., 2003; Verhoef, 2005)

2. Behavioral responses to road traffic policies

→ Reduced traffic volume in Singapore (Phang & Toh, 1997; Olsyewski & Xie, 2005), London (Santos *et al.*, 2004; Santos & Shaffer, 2004), Stockholm (Eliasson, 2009; Börjesson *et al.*, 2012), Gothenburg (Börjesson *et al.*, 2016), and Milan (Gibson & Carnovale, 2015; Beria, 2016), intertemporal substitution (Foreman, 2016), and substitution to unpriced roads (Leape, 2006; Tarduno, 2022)

Context	Theory	Estimation	Results	Compute	
00000●	000000	00000000	0000000	0000	
Literatur	e review				

This work speaks to three strands of literature:

- 1. Behaviorally-motivated taxes
 - → Taxation with behavioral agents (Farhi & Gabaix, 2020), internalities (Gerritsen, 2016; Allcott *et al.*, 2019), inattention (Chetty *et al.*, 2009, Koszegi & Seidl, 2013; Schwartzstein, 2014), self-control (Gruber & Koszegi, 2004; O'Donoghue & Rabin, 2006), social reputation (Benabou & Tirole, 2011)
 - → Congestion zone charges (Mun et al., 2003; Verhoef, 2005)

2. Behavioral responses to road traffic policies

→ Reduced traffic volume in Singapore (Phang & Toh, 1997; Olsyewski & Xie, 2005), London (Santos *et al.*, 2004; Santos & Shaffer, 2004), Stockholm (Eliasson, 2009; Börjesson *et al.*, 2012), Gothenburg (Börjesson *et al.*, 2016), and Milan (Gibson & Carnovale, 2015; Beria, 2016), intertemporal substitution (Foreman, 2016), and substitution to unpriced roads (Leape, 2006; Tarduno, 2022)

3. Adoption of environmentally friendly vehicles

→ Vehicle subsidies (Muehlegger & Rapson, 2018; Clinton & Steinberg, 2019), charging infrastructure (Li *et al.*, 2017; Springel, 2021), and low emission zones (Wolff, 2014)

Context	Theory	Estimation	Results	Compute	
000000	●00000	00000000	0000000	0000	

Model of urban travel

Consumer's problem (Anderson & Sallee, 2016):

- 1. Number of EV and ICE cars (i.e., n_E , n_I)
- 2. Number of CZ and non-CZ trips in EV and ICE cars (i.e., t_E^c , t_E^o , t_I^c , t_I^o)
- 3. Commuting distance for CZ and non-CZ trips (i.e., v^c , v^o)

$$\max_{n_E,n_I,t_E^c,t_E^o,t_I^c,t_I^o,v^c,v^o} B = \underbrace{\mu_E(n_E)[u_E^c(t_E^c) + u_E^o(t_E^o)]}_{\text{utility from EV trips}} - \underbrace{n_E(p^c + p_e e)v^c t_E^c - n_E(p^o + p_e e)v^o t_E^o}_{\text{utility cost of EV trips}} + \underbrace{\mu_I(n_I)[u_I^c(t_I^c) + u_I^o(t_I^o)]}_{\text{utility from ICE trips}} - \underbrace{n_I((p^c + p_g g)v^c + \tau)t_I^c - n_I(p^o + p_g g)v^o t_I^o}_{\text{utility cost of ICE trips}} + \underbrace{n_I(c_I - n_E c_E)}_{\text{cost of vehicles}} - \underbrace{r^c(v^c) - r^o(v^o)}_{\text{cost of location choice}} + y$$
(1)

- $\blacktriangleright~\nu^c,\nu^o$: Vehicle kilometer traveled in CZ and outside CZ
- $\blacktriangleright~c_I, c_E$: Cost of ICE and EV cars
- $\blacktriangleright~g,e:$ Vehicle fuel efficiency of ICE cars and EVs
- $\blacktriangleright \ p_g, p_e$: Cost of gasoline and electricity
- $\blacktriangleright \ p^c, p^o$: Kilometer costs of driving in CZ and outside CZ

Context	Theory	Estimation	Results	Compute	
000000	O●0000	00000000	0000000	0000	

Model of urban travel

Social planner's problem:

 \blacktriangleright Set congestion charge τ on ICE cars entering CZ

$$\max_{\tau} W = B^{-\tau} - \underbrace{n_{l}(v^{c}t_{l}^{c} + v^{o}t_{l}^{o})g\phi_{l}}_{\text{emission from ICE trips}} - \underbrace{n_{E}(v^{c}t_{E}^{c} + v^{o}t_{E}^{o})e\phi_{E}}_{\text{emission from EV trips}} - \underbrace{(n_{l}v^{c}t_{l}^{c} + n_{E}v^{c}t_{E}^{c})\gamma^{c}}_{\text{congestion from inside trips}} - \underbrace{(n_{l}v^{o}t_{l}^{o} + n_{E}v^{o}t_{E}^{o})\gamma^{o}}_{\text{congestion from outside trips}}$$

Externalities:

- Emission externalities differ by vehicle type (i.e., ϕ_E and ϕ_I)
- \blacktriangleright Congestion externalities differ by location (i.e., γ^c and $\gamma^o)$

Imperfections:

- Substitution towards unpriced roads
- Substitution across congestion and emission externalities

(2)

Context	Theory	Estimation	Results	Compute	
000000	00●000	00000000	0000000	0000	

Expression for congestion charge

$$\tau = \frac{1}{\frac{\partial t_{l}^{c}}{\partial \tau} n_{l}} \left(\frac{\partial n_{E}}{\partial \tau} \left((v^{c} t_{E}^{c} + v^{o} t_{E}^{o}) e\phi_{E} + v^{c} t_{E}^{c} \gamma^{c} + v^{o} t_{E}^{o} \gamma^{o} \right) + \frac{\partial n_{l}}{\partial \tau} \left((v^{c} t_{l}^{c} + v^{o} t_{l}^{o}) g\phi_{l} + v^{c} t_{l}^{c} \gamma^{c} + v^{o} t_{l}^{o} \gamma^{o} \right) + \frac{\partial t_{E}^{o}}{\partial \tau} \left(n_{E} v^{o} (e\phi_{E} + \gamma^{o}) \right) + \frac{\partial t_{E}^{c}}{\partial \tau} \left(n_{E} v^{c} (e\phi_{E} + \gamma^{c}) \right) + \frac{\partial t_{l}^{o}}{\partial \tau} \left(n_{l} v^{o} (g\phi_{l} + \gamma^{o}) \right) + \frac{\partial v^{c}}{\partial \tau} \left(n_{l} t_{l}^{c} g\phi_{l} + n_{E} t_{E}^{c} e\phi_{E} + (n_{l} t_{l}^{c} + n_{E} t_{E}^{c}) \gamma^{c} \right) + \frac{\partial v^{o}}{\partial \tau} \left(n_{l} t_{l}^{o} g\phi_{l} + n_{E} t_{E}^{o} e\phi_{E} + (n_{l} t_{l}^{o} + n_{E} t_{E}^{o}) \gamma^{o} \right) \right) + v^{c} (g\phi_{l} + \gamma^{c})$$
(3)

Interpretation:

▶ Change in motives x (congestion + emission) ext. + externality of CZ trips in ICE cars

ContextTheoryEstimationResultsComputeConclusion00000000000000000000000000000000000

Intuition for congestion charge

For the purpose of building intuition, we rearrange equation (3) as follows:

$$\tau = \underbrace{\Delta N_{E} \cdot (\widetilde{\phi_{E}} + \widetilde{\gamma_{E}}) + \Delta N_{I} \cdot (\widetilde{\phi_{I}} + \widetilde{\gamma_{I}})}_{\triangle Fleet \ composition} + \underbrace{\Delta T \cdot (\overline{\phi} + \overline{\gamma})}_{\triangle Trips} + \underbrace{\Delta V^{c} \cdot (\widehat{\phi^{c}} + \widehat{\gamma^{c}}) + \Delta V^{o} \cdot (\widehat{\phi^{o}} + \widehat{\gamma^{o}})}_{\triangle Commute \ Distances} + \underbrace{E^{c}}_{\triangle Externalities}$$

Motives:

- ▶ ΔN_E , ΔN_I : Changes in electric and ICE cars
- ΔT : Changes in the number of trips
- ▶ $\Delta V^{c}, \Delta V^{o}$: Changes in the commuting distance inside and outside

Externalities:

- $\blacktriangleright ~\widetilde{\phi} + \widetilde{\gamma}$: Emission and congestion externalities per car
- ▶ $\overline{\phi} + \overline{\gamma}$: Emission and congestion externalities per trip
- $\blacktriangleright~ \hat{\phi^c} + \hat{\gamma^c}$: Emission and congestion externalities per kilometer traveled

(4)

Context	Theory	Estimation	Results	Compute	
000000	0000●0	00000000	0000000	0000	

Interpreting the formula

Externality considerations:

▶ No congestion externality $(\gamma^c = \gamma^o = 0)$

 $\tau^{emission} = \Delta N_E \cdot \widetilde{\phi_E} + \Delta N_I \cdot \widetilde{\phi_I} + \Delta T \cdot \overline{\phi} + \Delta V^c \cdot \hat{\phi^c} + \Delta V^o \cdot \hat{\phi^o} + v^c g \phi_I$ (5)

 \rightarrow Change in motives x emission damages + emission externality

Context	Theory	Estimation	Results	Compute	
000000	0000●0	00000000	0000000	0000	
1					

Interpreting the formula

Externality considerations:

▶ No congestion externality $(\gamma^c = \gamma^o = 0)$

 $\tau^{emission} = \Delta N_E \cdot \widetilde{\phi_E} + \Delta N_I \cdot \widetilde{\phi_I} + \Delta T \cdot \overline{\phi} + \Delta V^c \cdot \hat{\phi^c} + \Delta V^o \cdot \hat{\phi^o} + v^c g \phi_I$ (5)

 \rightarrow Change in motives x emission damages + emission externality

• No emission externality (
$$\phi_E = \phi_I = 0$$
)

 $\tau^{congestion} = \Delta N_E \cdot \widetilde{\gamma_E} + \Delta N_I \cdot \widetilde{\gamma_I} + \Delta T \cdot \overline{\gamma} + \Delta V^c \cdot \hat{\gamma^c} + \Delta V^o \cdot \hat{\gamma^o} + v^c \gamma^c$ (6)

 \rightarrow Change in motives x congestion damages + congestion externality

Context	Theory	Estimation	Results	Compute	
000000	00000●	00000000	0000000	0000	
1					

Interpreting the formula

Substitution to unpriced trips:

• No leakage $\left(\frac{\partial t^{\circ}}{\partial \tau} = 0\right)$.

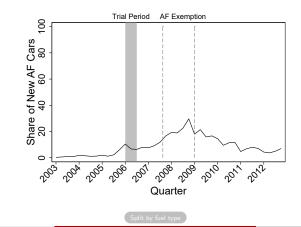
$$\tau^{leakage} = \frac{1}{\frac{\partial t_{l}}{\partial \tau} n_{l}} \left(\frac{\partial n_{E}}{\partial \tau} \left((v^{c} t_{E}^{c} + v^{o} t_{E}^{o}) e\phi_{E} + v^{c} t_{E}^{c} \gamma^{c} + v^{o} t_{E}^{o} \gamma^{o} \right) \right. \\ \left. + \frac{\partial n_{l}}{\partial \tau} \left((v^{c} t_{I}^{c} + v^{o} t_{I}^{o}) g\phi_{I} + v^{c} t_{I}^{c} \gamma^{c} + v^{o} t_{I}^{o} \gamma^{o} \right) \right. \\ \left. + \frac{\partial t_{E}^{c}}{\partial \tau} \left(n_{E} v^{c} (e\phi_{E} + \gamma^{c}) \right) \right. \\ \left. + \frac{\partial v^{c}}{\partial \tau} \left(n_{I} t_{I}^{c} g\phi_{I} + n_{E} t_{E}^{c} e\phi_{E} + (n_{I} t_{I}^{c} + n_{E} t_{E}^{c}) \gamma^{c} \right) \right. \\ \left. + \frac{\partial v^{o}}{\partial \tau} \left(n_{I} t_{I}^{o} g\phi_{I} + n_{E} t_{E}^{o} e\phi_{E} + (n_{I} t_{I}^{o} + n_{E} t_{E}^{o}) \gamma^{o} \right) \right) + v^{c} (g\phi_{I} + \gamma^{c})$$
(7)

 \rightarrow Change in motives x CZ externalities + externalities

Design of the congestion charge

Exemptions:

- 1. Essinge bypass and Lidingö rule
- 2. Alternative fuel cars



es 🔰 🤇 Annual charges

Evolution of alternative fuel cars

Timeline:

- 1. Stockholm Congestion Trials (Jan 2006 Jul 2006)
- 2. Permanent Implementation (Aug 2007)
 - \rightarrow AF car exemption (Aug 2007 Dec 2008) announcement in March 2007
 - \rightarrow Removal of AF car exemption (January 2012)

Context	Theory	Estimation	Results	Compute	
000000	000000	00●00000	0000000	0000	
Data					

We combine various Swedish administrative data sources (2003 to 2008):

- 1. Swedish vehicle register (Fordonsregistret)
- 2. Longitudinal integrated database for health insurance and labor market studies (LISA)
- 3. Geographic database (Geografidatabasen)
- 4. Occupational register (Yrkesregistret)
- 5. Swedish business register (*Företagsregister*)

Context	Theory	Estimation	Results	Compute	
000000	000000	00●00000	000000	0000	
Data					

We combine various Swedish administrative data sources (2003 to 2008):

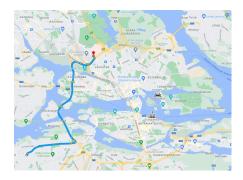
- 1. Swedish vehicle register (Fordonsregistret)
- 2. Longitudinal integrated database for health insurance and labor market studies (LISA)
- 3. Geographic database (Geografidatabasen)
- 4. Occupational register (Yrkesregistret)
- 5. Swedish business register (*Företagsregister*)

Sample restrictions:

▶ Employed, *treated*/*non-treated* commuters, commute between 3-50km, own 1-3 cars

Sample size

Context	Theory	Estimation	Results	Compute	
000000	000000	000●0000	0000000	0000	
Empirical	design				


1 0

Intuition for identification:

▶ Both commuters resides outside CZ (Hägersten)

Treated commuters:

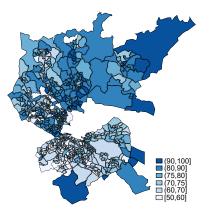
▶ Workplace is **inside** the CZ (*Vasastan*)

Non-treated commuters:

▶ Workplace is **outside** the CZ (*Solna* centrum)

Context	Theory	Estimation	Results	Compute	Conclusion
000000	000000	0000●000	0000000	0000	O
Empirica	l design				

Definition of treatment and control group:


- ▶ *Treated*: Individuals who cross the CZ on their way to work
- Non-treated: Individuals who live and work outside the CZ and use the Essinge bypass or the Lidingö tunnel on their (time-minimizing) way to and from work

		Workplace Location		
		Inside	Outside	
Neighborhood	Inside	Excluded	Treated commuters	
Location	Outside	Treated commuters	<i>Non-treated commuters</i> via Essinge/Lidingö	

Context	Theory	Estimation	Results	Compute	
000000	000000	00000●00	0000000	0000	

Treated commuters

Treated and non-treated commuters by area:

Context	Theory	Estimation	Results	Compute	
000000	000000	000000●0	0000000	0000	
Estimatin	g equation				

Difference-in-Difference specification:

$$y_{it} = \beta post_t \times T_i + \theta T_i + \delta X_{it} + \lambda_t + \phi_n + \varepsilon_{it}, \qquad (8)$$

- ▶ *y*_{*i*,*t*} : Outcome of interest
- ▶ *post_t* : Dummy variable equal to 1 after CZ implementation or the AF car exemption
- ► *T_i* : Dummy variable equal to 1 if the individual is classified as a *treated commuter*
- > $X_{i,q}$: Individual demographic variables, work-route specific controls, and previous car attributes
- λ_t : Time-varying factors
- ϕ_n : Neighborhood fixed effects

Context	Theory	Estimation	Results	Compute	
000000	000000	000000●0	0000000	0000	
Estimatin	g equation				

Difference-in-Difference specification:

$$y_{it} = \beta post_t \times T_i + \theta T_i + \delta X_{it} + \lambda_t + \phi_n + \varepsilon_{it}, \qquad (8)$$

- ► *y*_{*i*,*t*} : Outcome of interest
- ▶ *post_t* : Dummy variable equal to 1 after CZ implementation or the AF car exemption
- ► T_i : Dummy variable equal to 1 if the individual is classified as a *treated commuter*
- > $X_{i,q}$: Individual demographic variables, work-route specific controls, and previous car attributes
- λ_t : Time-varying factors
- ϕ_n : Neighborhood fixed effects

Coefficient of interest:

• β : Response to congestion charge

Context	Theory	Estimation	Results	Compute	
000000	000000	000000●0	0000000	0000	
Estimatin	g equation				

Difference-in-Difference specification:

$$y_{it} = \beta post_t \times T_i + \theta T_i + \delta X_{it} + \lambda_t + \phi_n + \varepsilon_{it}, \qquad (8)$$

- $y_{i,t}$: Outcome of interest
- ▶ *post_t* : Dummy variable equal to 1 after CZ implementation or the AF car exemption
- ► *T_i* : Dummy variable equal to 1 if the individual is classified as a *treated commuter*
- > $X_{i,q}$: Individual demographic variables, work-route specific controls, and previous car attributes
- λ_t : Time-varying factors
- ϕ_n : Neighborhood fixed effects

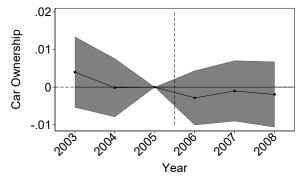
Coefficient of interest:

• β : Response to congestion charge

Interpretation:

Average treatment effect on the treated (ATT)

Context	Theory	Estimation	Results	Compute	
000000	000000	0000000●	0000000	0000	
Dynamics					


Dynamics effects:

$$y_{it} = \sum_{s \in \{T \mid s \neq 2006\}} \beta_t T_i \times \mathbb{1}[t=s] + \theta T_i + \delta X_{it} + \lambda_t + \phi_n + \varepsilon_{it}, \qquad (9)$$

Assumption:

▶ No pre-trend in car ownership and driving behavior prior to CZ $\hat{\beta}_t \approx 0$

Car ownership and total vehicle kilometers traveled:

Context	Theory	Estimation	Results	Compute	
000000	000000	0000000	●000000	0000	

Fleet composition

Effect on fleet composition (*Motive I*):

- ▶ Individuals exposed to congestion charges on their way to work are: [Effects of Congestion Charges
 - ightarrow .65 percentage points more likely to adopt an AF car
 - $\rightarrow\,$.69 percentage points less likely to adopt an ICE car
- ▶ 25% of AF car acquisition due to new vehicles Estimates on new cars
- No significant effect on vehicle characteristics Estimates on vehicle attributes

Context	Theory	Estimation	Results	Compute	
000000	000000	0000000	0●00000	0000	
Number of	trips				

Effect on total number of trips: Effects of Congestion Charges

- *Estimation*: AF exemption period ($post_t \ge 2007$)
- ▶ Individuals exposed to congestion charges on their way to work: Effects on kilometers
 - \rightarrow increase trips with AF cars by 6.8 (125 km)
 - \rightarrow decrease trips with ICE cars by 16.1 (293 km)

Context	Theory	Estimation	Results	Compute	
000000	000000	00000000	○●○○○○○	0000	
Number o	of trips				

Effect on total number of trips: Effects of Congestion Charges

- *Estimation*: AF exemption period ($post_t \ge 2007$)
- Individuals exposed to congestion charges on their way to work: Effects on kilometers
 - \rightarrow increase trips with AF cars by 6.8 (125 km)
 - \rightarrow decrease trips with ICE cars by 16.1 (293 km)

Effect on CZ trips (*Motive II*a):

- *Estimation*: Removal of AF car exemption ($post_t \ge 2012$)
- Individuals exposed to congestion charges on their way to work:
 - \rightarrow increase CZ trips with AF cars by 5.7 (99 km)
 - \rightarrow decrease CZ trips with ICE cars by 14.6 (253 km)
- ▶ 78% of trips in AF cars & 87% in ICE cars were inside changes

Context	Theory	Estimation	Results	Compute	
000000	000000	00000000	0●00000	0000	
Number o	of trips				

Effect on total number of trips: Effects of Congestion Charges

- *Estimation*: AF exemption period ($post_t \ge 2007$)
- ▶ Individuals exposed to congestion charges on their way to work: Effects on kilometers
 - \rightarrow increase trips with AF cars by 6.8 (125 km)
 - $\rightarrow\,$ decrease trips with ICE cars by 16.1 (293 km)

Effect on CZ trips (*Motive II*a):

- *Estimation*: Removal of AF car exemption ($post_t \ge 2012$)
- Individuals exposed to congestion charges on their way to work:
 - \rightarrow increase CZ trips with AF cars by 5.7 (99 km)
 - \rightarrow decrease CZ trips with ICE cars by 14.6 (253 km)
- ▶ 78% of trips in AF cars & 87% in ICE cars were inside changes

Effect on non-CZ trips (Motive IIb):

- Estimation: Residual of total and CZ trips
- Individuals exposed to congestion charges on their way to work:
 - $\rightarrow\,$ increase non-CZ trips with AF cars by 1.1 (26 km)
 - $\rightarrow\,$ decrease non-CZ trips with ICE cars by 1.5 (40 km)

Context	Theory	Estimation	Results	Compute	
000000	000000	00000000	00●0000	0000	
C					

Commuting distance

Effect on moving & relocating workplaces:

- ▶ Individuals exposed to congestion charges on their way to work are: Estimates on moving
 - \rightarrow .2 percentage points more likely to move inside CZ
 - $\rightarrow~1.6$ percentage points more likely to relocate to workplace outside CZ
 - 43 percent transfer to a new company
 - 57 percent relocate to a new office
 - Slight positive effects on salary Estimates on earnings

Context 000000	Theory 000000	Estimation 00000000	Results 00●0000	Compute 0000	

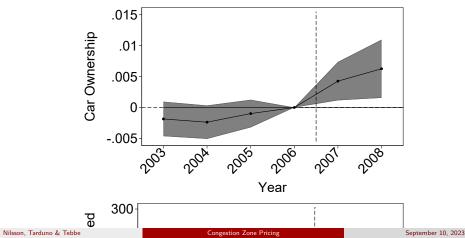
Commuting distance

Effect on moving & relocating workplaces:

- Individuals exposed to congestion charges on their way to work are: Estimates on moving
 - \rightarrow .2 percentage points more likely to move inside CZ
 - $\rightarrow~1.6$ percentage points more likely to relocate to workplace outside CZ
 - 43 percent transfer to a new company
 - 57 percent relocate to a new office
 - Slight positive effects on salary Estimates on earnings

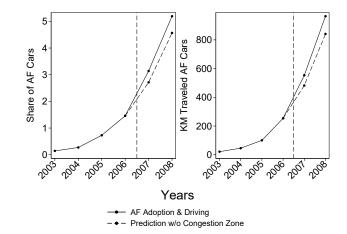
Effect on commuting distance (Motive III):

- ▶ Individuals exposed to congestion charges on their way to work: Effects of Congestion Charges
 - \rightarrow decrease commute distance by .086 kilometers
 - $\rightarrow\,$ decrease outside commute distance by .014 kilometers


Context	Theory	Estimation	Results	Compute	
000000	000000	00000000	000€000	0000	
1					

Dynamic estimates

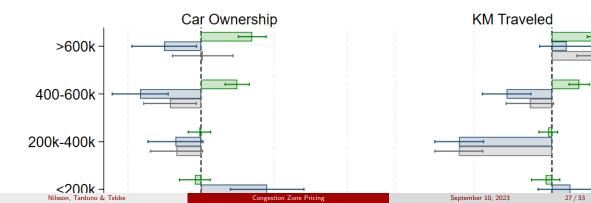
Individuals exposed to congestion charges on their way to work:


- ▶ are .65 percentage points more likely to adopt an AF car
- ▶ increase vehicle kilometers by 125.5 in AF cars

AF Car ownership and AF vehicle kilometers traveled:

Context	Theory	Estimation	Results	Compute	
000000	000000	00000000	0000●00	0000	
Predictions					

Congestion charge explains 20% of adoption and usage of AF cars



Context	Theory	Estimation	Results	Compute	
000000	000000	00000000	00000●0	0000	

Heterogeneity

Heterogeneous responses to congestion charge:

- ▶ Income: High-income adopt AFs, middle-income reduce driving, low-income adopt ICE
- ► Family status: Couples shift to AF adoption and usage Family
- ▶ Education: AF take-up is increasing with education Education
- ► Age: Young people switch to AFs, old people reduce driving Acc
- Commuting: No stark differences in commuting Commute

Context	Theory	Estimation	Results	Compute	
000000	000000	00000000	000000●	0000	
Robustne	ess checks				

- 1. Balanced sample
 - → Individuals observed in all years (2003-2008) Balanced sample

Context	Theory	Estimation	Results	Compute	
000000	000000	00000000	000000●	0000	
Robustne	ess checks				

- 1. Balanced sample
 - → Individuals observed in all years (2003-2008) Balanced sample
- 2. Treatment group definitions:
 - \rightarrow Treated commuters outside the CZ Outside commuter
 - \rightarrow Treated commuters inside the CZ (Inside commuter)

Context	Theory	Estimation	Results	Compute	
000000	000000	00000000	000000●	0000	
Robustne	ess checks				

- 1. Balanced sample
 - → Individuals observed in all years (2003-2008) Balanced sample
- 2. Treatment group definitions:
 - \rightarrow Treated commuters outside the CZ Outside commuter
 - \rightarrow Treated commuters inside the CZ (Inside commuter)
- 3. Workplace specifications
 - \rightarrow Include firm-level FE and firm characteristics Firm FE
 - \rightarrow Exclude workplaces located > 3km from CZ (Nearby Firms)

Context	Theory	Estimation	Results	Compute	
000000	000000	00000000	000000●	0000	
Robustne	ess checks				

- 1. Balanced sample
 - → Individuals observed in all years (2003-2008) Balanced sample
- 2. Treatment group definitions:
 - → Treated commuters outside the CZ Outside commuter
 - \rightarrow Treated commuters inside the CZ (Inside commuter)
- 3. Workplace specifications
 - \rightarrow Include firm-level FE and firm characteristics (Firm FE
 - \rightarrow Exclude workplaces located > 3km from CZ (Nearby Firms)
- 4. Placebo tests
 - \rightarrow No impact on AF adoption after exemption Placebo Years

Implement congestion formula using:

- 1. Registry data Registry data
- 2. Estimates of CZ effect Estimates
- 3. Emission and congestion externalities: Externalities
 - → ϕ_E, ϕ_I : €.033 per KM in ICE and €0 per KM in EV (European Environment Agency, 2014 & 2021)
 - → γ^{c}, γ^{o} : €.38 per KM inside and €.13 per KM outside CZ (External Costs of Transport Study, 2011)

Implement congestion formula using:

- 1. Registry data Registry data
- 2. Estimates of CZ effect Estimates
- 3. Emission and congestion externalities: Externalities
 - → ϕ_E, ϕ_I : €.033 per KM in ICE and €0 per KM in EV (European Environment Agency, 2014 & 2021)
 - → γ^{c}, γ^{o} : €.38 per KM inside and €.13 per KM outside CZ (External Costs of Transport Study, 2011)

- ▶ €10.44 per CZ crossing or €.6 per KM
- ▶ 89% of total charge is due to congestion (€9.3); 11% due to emission (€1.14)

Implement congestion formula using:

- 1. Registry data Registry data
- 2. Estimates of CZ effect Estimates
- 3. Emission and congestion externalities: Externalities
 - → ϕ_E, ϕ_I : €.033 per KM in ICE and €0 per KM in EV (European Environment Agency, 2014 & 2021)
 - → γ^{c}, γ^{o} : €.38 per KM inside and €.13 per KM outside CZ (External Costs of Transport Study, 2011)

- ▶ €10.44 per CZ crossing or €.6 per KM
- ▶ 89% of total charge is due to congestion (€9.3); 11% due to emission (€1.14)
- 1. Fleet composition corresponds to \notin 1.77
 - \rightarrow Decrease in ICE fleet (€1.79)
 - $\rightarrow\,$ Increase in EV fleet (-€.02)

Implement congestion formula using:

- 1. Registry data Registry data
- 2. Estimates of CZ effect Estimates
- 3. Emission and congestion externalities: Externalities
 - → ϕ_E, ϕ_I : €.033 per KM in ICE and €0 per KM in EV (European Environment Agency, 2014 & 2021)
 - → γ^{c}, γ^{o} : €.38 per KM inside and €.13 per KM outside CZ (External Costs of Transport Study, 2011)

- ▶ €10.44 per CZ crossing or €.6 per KM
- ▶ 89% of total charge is due to congestion (€9.3); 11% due to emission (€1.14)
- 1. Fleet composition corresponds to $\notin 1.77$
 - → Decrease in ICE fleet (€1.79)
 - \rightarrow Increase in EV fleet (-€.02)
- 2. Changes in trips accounts for \notin 7.59
 - \rightarrow Trips in ICE cars (\in 7.29)
 - \rightarrow Substitution towards unpriced roads (€.33)
 - → Increase in EV CZ trips (-€.03)

Implement congestion formula using:

- 1. Registry data Registry data
- 2. Estimates of CZ effect Estimates
- 3. Emission and congestion externalities: Externalities
 - → ϕ_E, ϕ_I : €.033 per KM in ICE and €0 per KM in EV (European Environment Agency, 2014 & 2021)
 - → γ^{c}, γ^{o} : €.38 per KM inside and €.13 per KM outside CZ (External Costs of Transport Study, 2011)

- ▶ €10.44 per CZ crossing or €.6 per KM
- ▶ 89% of total charge is due to congestion (€9.3); 11% due to emission (€1.14)
- 1. Fleet composition corresponds to \notin 1.77
 - → Decrease in ICE fleet (€1.79)
 - \rightarrow Increase in EV fleet (-€.02)
- 2. Changes in trips accounts for \notin 7.59
 - \rightarrow Trips in ICE cars (\in 7.29)
 - \rightarrow Substitution towards unpriced roads (€.33)
 - → Increase in EV CZ trips (-€.03)
- **3**. Commuting distances are equal to eq 1.08
 - $\rightarrow\,$ Reduce distance between workplace and residence (€1)
 - \rightarrow Reduce outside commute (€.08)

Congestion charge under alternative assumptions

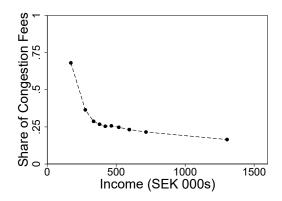
1. Substitution towards unpriced road trips:

- \rightarrow No leakage (€9.84): All trip changes within CZ
- \rightarrow 25% leakage (€11.77): One-quarter of trip changes within CZ
- \rightarrow 50% leakage (€15.64.): One-half of trip changes within CZ

2. Commute distance:

→ Nearby commuters ($\{$ 7.79)): Use average commuting distance of all commuters (11.9km)

3. Share of EVs:


- \rightarrow 10% EVs (€10.07): 10% of cars and trips are traveled with EVs
- → 25% EVs (€9.48): 25% of cars and trips are traveled with EVs

Alternative Assumptions

Context	Theory	Estimation	Results	Compute	
000000	000000	00000000	0000000	○○●○	
Regressiv	e effects				

Distributional profile:

▶ Congestion charges falls disproportionately on low-income individuals

Context	Theory	Estimation	Results	Compute	
000000	000000	0000000	0000000	○○○●	

Distributional concerns

Three factors exacerbate regressive effects:

- 1. Substitution to other modes of transport:
 - \rightarrow Substituting to alternative modes of transportation more challenging for low-income ind.

Context	Theory	Estimation	Results	Compute	
000000	000000	0000000	0000000	000●	

Distributional concerns

Three factors exacerbate regressive effects:

- 1. Substitution to other modes of transport:
 - $\rightarrow\,$ Substituting to alternative modes of transportation more challenging for low-income ind.

2. Revenue recycling:

 \rightarrow Revenues were designated for a new bypass around Stockholm and road investments (Eliasson *et al.*, 2014)

Context	Theory	Estimation	Results	Compute	
000000	000000	00000000	0000000	○○○●	

Distributional concerns

Three factors exacerbate regressive effects:

- 1. Substitution to other modes of transport:
 - $\rightarrow\,$ Substituting to alternative modes of transportation more challenging for low-income ind.

2. Revenue recycling:

 \rightarrow Revenues were designated for a new bypass around Stockholm and road investments (Eliasson *et al.*, 2014)

3. Exemption of AF cars:

 \rightarrow Exemptions and discounts skewed towards high-income groups (Levinsson, 2010; Ison & Rye, 2005)

Context	Theory	Estimation	Results	Compute	Conclusion
000000	000000	0000000	0000000	0000	
Conclusion					

▶ Theoretical and empirical framework for calculating congestion charges

Context	Theory	Estimation	Results	Compute	Conclusion
000000	000000	00000000	0000000	0000	•
Conclusion					

▶ Theoretical and empirical framework for calculating congestion charges

Identification:

▶ Variation in individuals' exposure to tolls on the road section between home and work

Context	Theory	Estimation	Results	Compute	Conclusion
000000	000000	00000000	0000000	0000	
Conclusion					

▶ Theoretical and empirical framework for calculating congestion charges

Identification:

▶ Variation in individuals' exposure to tolls on the road section between home and work

Empirical findings:

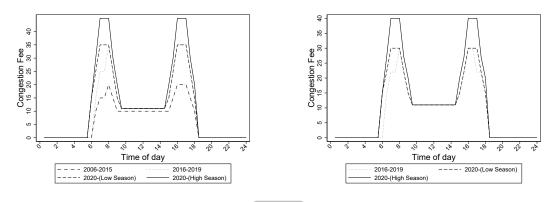
- ▶ Substantial effects on fleet composition, number of trips, and commuting
 - \rightarrow Increase in take-up of AF cars
 - $\rightarrow\,$ Crowd out adoption of ICE cars
 - $\rightarrow\,$ Shift trips from ICE to AF cars or other transport modes
 - $\rightarrow\,$ Move into CZ or relocate to workplace outside CZ

Context	Theory	Estimation	Results	Compute	Conclusion
000000	000000	00000000	0000000	0000	
Conclusion					

▶ Theoretical and empirical framework for calculating congestion charges

Identification:

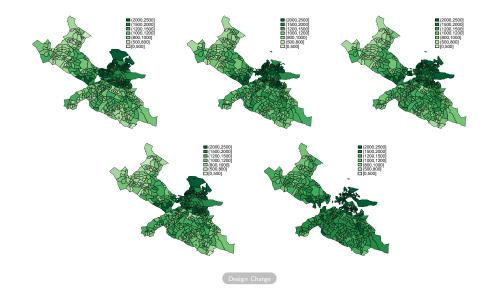
▶ Variation in individuals' exposure to tolls on the road section between home and work

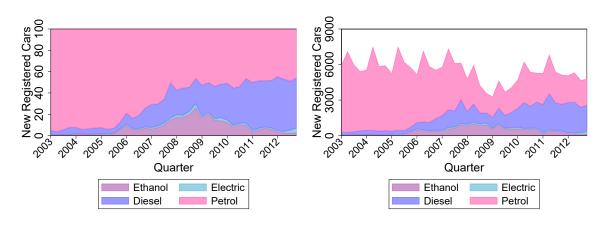

Empirical findings:

- Substantial effects on fleet composition, number of trips, and commuting
 - \rightarrow Increase in take-up of AF cars
 - $\rightarrow\,$ Crowd out adoption of ICE cars
 - $\rightarrow\,$ Shift trips from ICE to AF cars or other transport modes
 - $\rightarrow\,$ Move into CZ or relocate to workplace outside CZ

Policy implications:

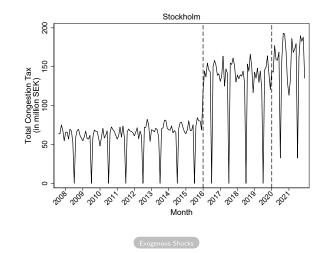
► Congestion charge equals €10.44 per crossing (€.6 per KM)


Congestion charges in Stockholm


Design Charge

A2.Background	A3.Identification	A4.Additional Results	A4.Robustness checks	A5.Computation
○●○○	00	000000000	000000	000000

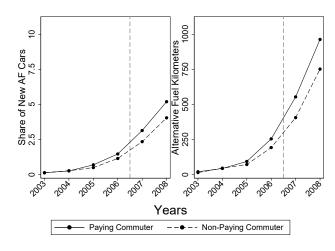
Annual congestion charges



Evolution AF cars

A2.Background	A3.Identification	A4.Additional Results	A4.Robustness checks	A5.Computation
000●	OO	0000000000	000000	

Total congestion fees


A2.Background	A3.Identification	A4.Additional Results	A4.Robustness checks	A5.Computation
0000	●○	000000000	000000	

Sample selection

	Sample Selection Criteria					Balanced Sample		
-	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Years								
2003	1,217,085	845,890	298,371	280,329	212,715	194,465	77,002	34,845
2004	1,236,578	859,827	301,500	283,150	209,222	188,195	75,721	34,845
2005	1,260,738	870,769	306,148	287,517	204,165	178,761	72,888	34,845
2006	1,293,780	903,686	315,007	295,840	192,484	157,645	66,594	34,845
2007	1,329,834	972,133	336,640	315,534	192,484	157,645	67,481	34,845
2008	1,366,838	993,526	345,715	324,067	192,484	157,645	68,181	34,845
Individuals	1,525,337	1,247,558	605,330	570,629	318,011	283,172	125,173	34,845
Total	7,704,853	5,445,831	1,903,381	1,786,437	1,203,553	1,034,356	427,867	209,070

Data sources

Vehicle ownership and driving

Prediction Performance

Effects of Congestion Charges

	Type of Car			
	(1) Alternative	(2) Fossil	(3) Total	
A.Vehicle Ownership				
Post × Treated Commuters	.0064***	0083**	0030	
	(.0014)	(.0035)	(.0033)	
Mean Car Ownership (t-1)	.014	1.138	1.145	
B.Number of Trips				
Post x Treated Commuters	6.6***	-13.8***	-8.2**	
	(1.5)	(3.9)	(3.8)	
Inside Congestion Trips	5.9* [*]	-11.8**	-5.9	
	(2.9)	(5.0)	(4.7)	
Mean Trips Inside (t-1)	6.4	399.1	401.7	
Change Trips Outside (t-1)	.70	-2	-2.3	
Mean Trips Outside	6.9	432.1	434.8	
C.Commuting Distance				
Post x Treated Commuters			086***	
Mean Commute Distance (t-1)			17.5	
Changes in Outside Distance			007	
Mean Outside Distance (t-1)			19	

A2.Background 0000	A3.Identification	A4.Additional Results ○●○○○○○○○	A4.Robustness checks 000000	A5.Computation

Estimates on vehicle attributes

	Vehicle Attribute			
	(1) Fuel	(2) Carbon	(3) Weight	(4) Engine
A.Vehicle Ownership				
Post × Treated Commuters	0269 (.0210)	.0385 (.3953)	8850 (1.7292)	0352 (.2366)
Mean Dep. Variable (2006) Observations	4.2 416256	200.6 182236	1417.4 416256	`99.5´ 416256

Fleet Composition

A2.Background 0000	A3.Identification	A4.Additional Results	A4.Robustness checks 000000	A5.Computation

Estimates on new car adoption

	Type of Car			
	(1) Alternative	(2) Fossil	(3) Total	
A.Vehicle Ownership				
Post × Treated Commuters	.0017*** (.0007)	0037** (.0018)	0022 (.0019)	
Mean New Car Adoption (t-1)	.005´	.063	.066	

Fleet Composition

A2.Background	A3.Identification	A4.Additional Results	A4.Robustness checks	A5.Computation
0000		000●000000	000000	000000

Estimates on vehicle kilometers traveled

	Vehicle Kilometers Traveled			
	(1) Alternative	(2) Fossil	(3) Total	
A.Alternative Fuel Exemption				
Post x Treated Commuters	121.39*** (26.79)	-253.05*** (70.97)	-149.78** (69.44)	
Mean Vehicle Kilometers (t-1)	242.7	15202.4	15299	
B.Removal of Alternative Exempt	ion			
Post x Treated Commuters	-103.50**	206.29**	102.79	
	(50.88)	(87.48)	(82.69)	
Mean Vehicle Kilometers (t-1)	1885.1	12168.6	14053.7	

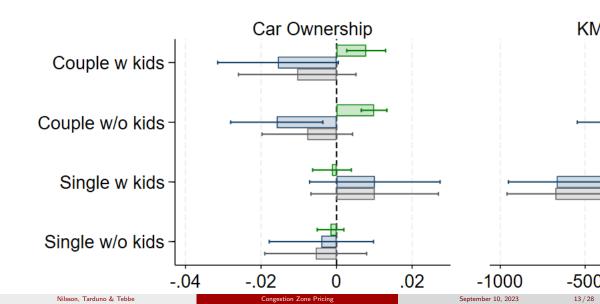
Number of trips

A2.Background	A3.Identification	A4.Additional Results	A4.Robustness checks	A5.Computation
0000	OO	0000●00000	000000	

Estimates on moving

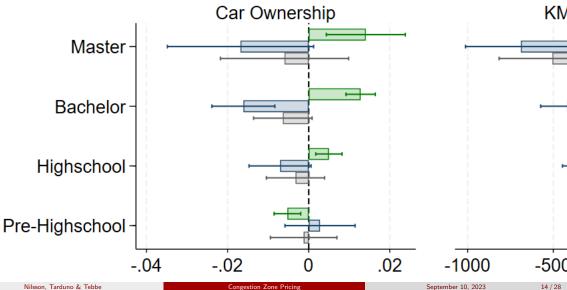
	Probability of Moving			
	(1) Anywhere	(2) Outside	(3) Congestion	
A.Residential Move				
Post x Treated Commuters	005***	006***	.002***	
	(.002)	(.002)	(.000)	
Mean Dep. Variable	.059 [´]	.056	.003	
B.Workplace Relocation				
Post × Treated Commuters	.005**	.016***	010***	
	(.002)	(.001)	(.002)	
Mean Dep. Variable	.094	.025	.069	
New Employer	007***	.007***	014***	
	(.002)	(.001)	(.001)	
Old Employer	.012***	.008***	.004***	
	(.001)	(.001)	(.001)	

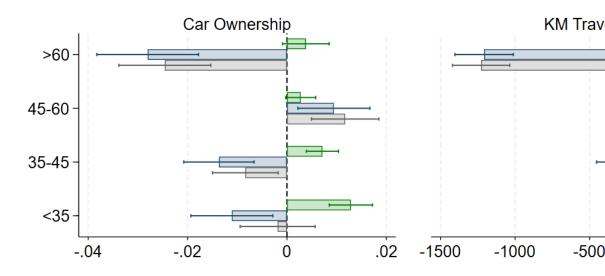
Commuting distance


A2.Background 0000	A3.Identification	A4.Additional Results 00000●0000	A4.Robustness checks 000000	A5.Computation

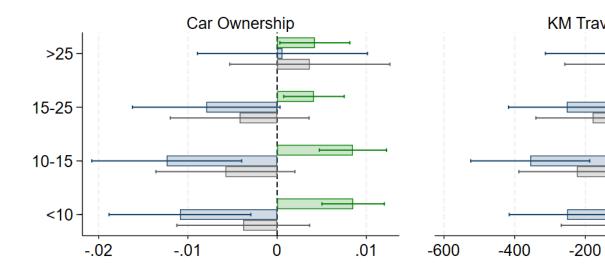
Estimates on earnings

	Labor Market Effects			
	(1) Gross Salary (2) Disposable Incon			
Post × Treated Commuters	2484.1*	1872.8		
	(1475.6)	(1735.0)		
Mean Dep. Variable	504373.1	268048.1		


Commuting distance



Heterogeneity - Education


A2.Background 0000	A3.Identification	A4.Additional Results 0000000●0	A4.Robustness checks 000000	A5.Computation

Heterogeneity - Age

A2.Background	A3.Identification	A4.Additional Results 00000000●	A4.Robustness checks 000000	A5.Computation

Heterogeneity - Commute

A2.Background 0000	A3.Identification	A4.Additional Results 0000000000	A4.Robustness ●00000	checks	A5.Computa 000000
Balanced	l sample estimates				
		Ту	pe of Car		
		(1) Alternative	(2) Fossil	(3) Total	
	A.Vehicle Ownership				
	Post x Treated Commuters	.0049*** (.0019)	0060 (.0048)	0018 (.0046)	
	Mean Car Ownership (t-1)	.015	1.164	1.171	
	B.Number of Trips				
	Post × Treated Commuters	4.5**	-14.6***	-10.6**	
		(2.1)	(4.9)	(4.8)	
	Inside Congestion Trips	4.5	-6.5	-2.0	
		(3.3)	(6.1)	(5.6)	
	Mean Trips Inside (t-1)	6.4	404.3	406.9	
	Change Trips Outside (t-1)	0	-8.1	-8.6	
	Mean Trips Outside	7.1	446.1	449	

C.Commuting Distance Nilsson, Tarduno & Tebbe

A2.Background 0000	A3.Identification OO	A4.Additional Results 0000000000	A4.Robustness ○●○○○○○	checks	A5.Computation
Outside	congestion zone effects	5			
		Ту	pe of Car		
		(1) Alternative	(2) Fossil	(3) Total	
	A.Vehicle Ownership				
	Post × Treated Commuters	.0037*** (.0013)	0036 (.0035)	0025 (.0034)	
	Mean Car Ownership (t-1)	.014	1.145	1.152	
	B.Number of Trips				
	Post x Treated Commuters	3.8***	-11.4***	-9.9**	
	Inside Congestion Trips	(1.4) 1.9 (2.9)	(3.9) -8.8* (5.0)	(3.9) -6.9 (4.8)	

Mean Trips Inside (t-1) Change Trips Outside (t-1) Mean Trips Outside

Nilsson, Tarduno & Tebbe

C.Commuting Distance

6.4

2

6.9

402.3

-2.6

435.5

404.7

-2.9

438.1

A2.Background 0000	A3.Identification OO	A4.Additional Results 0000000000	A4.Robustness o 00●000	checks	A5.Computation 000000
Inside co	ngestion zone effects				
		Ту	vpe of Car		
		(1) Alternative	(2) Fossil	(3) Total	
	A.Vehicle Ownership				
	Post x Treated Commuters	.0174*** (.0017)	0422*** (.0050)	0078* (.0043)	
	Mean Car Ownership (t-1)	.014	`1.13´	`1.139 [´]	
	B.Number of Trips				
	Post x Treated Commuters	17.6*** (1.8)	-31.8*** (5.6)	3.4 (5.3)	
	Inside Congestion Trips	33.9*** (4.0)	-33.9*** (6.5)	1 (6.1)	
	Mean Trips Inside (t-1) Change Trips Outside (t-1) Mean Trips Outside	6.4	406.9 2.1 440.5	409.8 3.5 443.6	

C.Commuting Distance Nilsson, Tarduno & Tebbe

A2.Background	A3.Identification	A4.Additional Results	A4.Robustness checks	A5.Computation
0000	OO	0000000000	000●00	000000
Estimates with	firm characteris	tics		

	Ту	pe of Car	
	(1) Alternative	(2) Fossil	(3) Total
A.Vehicle Ownership			
Post x Treated Commuters	.0067*** (.0014)	0084** (.0036)	0030 (.0035)
Mean Car Ownership (t-1)	.014	1.138	1.145
B.Number of Trips			
Post × Treated Commuters	6.5***	-15.9***	-10.6***
	(1.5)	(4.0)	(3.9)
Inside Congestion Trips	6.1**	-5.0	1.0
	(2.9)	(5.0)	(4.7)
Mean Trips Inside (t-1)	6.4	399.1	401.7
Change Trips Outside (t-1)	.4	-10.9	-11.6
Mean Trips Outside	6.9	432.1	434.8

Robustness Checks

A2.Background	A3.Identification	A4.Additional Results	A4.Robustness checks	A5.Computation
0000		0000000000	0000€0	000000

Estimates with workplaces near congestion zone

	Ту	pe of Car	
	(1) Alternative	(2) Fossil	(3) Total
A.Vehicle Ownership			
Post x Treated Commuters	.0044*** (.0016)	0110** (.0045)	0078* (.0043)
Mean Car Ownership (t-1)	.013	1.139	1.146
B.Number of Trips			
Post x Treated Commuters	4.5**	-16.0***	-12.2**
	(1.8)	(5.0)	(4.9)
Inside Congestion Trips	3.7	-15.1**	-11.4*
	(3.8)	(6.4)	(5.9)
Mean Trips Inside (t-1)	6.1	410.2	412.7
Change Trips Outside (t-1)	.7	9	8
Mean Trips Outside	6.4	429.7	432.3

C.Commuting Distance Nilsson, Tarduno & Tebbe

A2.Background 0000		A4.Additional Results	A4.Robustness 00000●	checks	A5.Computation
Placebo	year estimates				
-					
		Ту	pe of Car		
		(1) Alternative	(2) Fossil	(3) Total	
	A.Vehicle Ownership				
	Post x Treated Commuters	.0032 (.0025)	0054 (.0046)	0023 (.0041)	
	Mean Car Ownership (t-1)				
	B.Number of Trips				
	Post x Treated Commuters	.7 (2.7)	6 (4.7)	.1 (4.6)	
	C.Commuting Distance				
	Post x Treated Commuters			.070*** (.018)	
	Mean Commute Distance (t-	1)		17.5	
	Changes in Outside Distance	2		142	
Nilssor	Moon Outcido Distance († 1)	Congestion Zone Pricing		1 N September 10, 2023	22 / 28

Congestion charge decomposition

		Externa	lity (€)
	Per-crossing (€)	Congestion	Emission
Fleet Composition	1.77		
Effect on electric cars $\Delta N_E(\widetilde{\phi_E}+\widetilde{\gamma_E})$	02	-0.02	0
Effect on ICE cars $\Delta N_{l}(\widetilde{\phi}_{l}+\widetilde{\gamma}_{l})$	1.79	1.54	.25
Number of Trips	7.59		
Effect on electric trips outside $\Delta T_E^o (\overline{\phi_E^o} + \overline{\gamma_E^o})$	00	00	0
Effect on electric trips inside $\Delta T_{F}^{c} (\overline{\phi_{F}^{c}} + \overline{\gamma_{F}^{c}})$	03	03	0
Effect on ICE trips outside $\Delta T_{I}^{o} (\overline{\phi_{I}^{o}} + \overline{\gamma_{I}^{o}})$.33	.25	.08
ICE trips inside $v^c(g\phi_I + \gamma^c)$	7.29	6.6	.69
Commuting Distance	1.08		
Effect on inside commute $\Delta V^{c}(\hat{\phi^{c}}+\hat{\gamma^{c}})$	1	.9	.1
Effect on outside commute $\Delta V^o(\hat{\phi^o}+\hat{\gamma^o})$.08	.06	.02
Congestion charge (€)	10.44	9.3	1.14

Mapping

A2.Background	A3.Identification	A4.Additional Results	A4.Robustness checks	A5.Computation
0000		000000000	000000	○●○○○○

Alternative Assumptions

		Externality (€)		
	Per-crossing (€)	Congestion	Emission	
Baseline	10.44	9.3	1.14	
No leakage	9.84	8.81	1.03	
25% leakage	11.77	10.38	1.39	
50% leakage	15.64	13.53	2.11	
Nearby commuters	7.79	6.91	.88	
10% EVs	10.07	8.93	1.14	
25% EVs	9.48	8.34	1.14	

Alternative Assumptior

A2.Background 0000	A3.Identification	A4.Additional Results	A4.Robustness checks 000000	A5.Computation 00●000

Emission externalities

Coefficient	Descriptions	Value
ΔPM	Emission of particulate matter $\left[\frac{g}{kg \ fuel}\right]$.25
ΔCO_2	Emission from carbon dioxide $\left[\frac{g}{kg \ fuel}\right]$	3162
ΔNH_3	Emission from ammonia $\left[\frac{g}{kg \ fuel}\right]$	9.11
ΔSO_2	Emission from sulfur dioxide $\left[\frac{g}{kg \text{ fuel }}\right]$	6.69
$MC_{PM_{2.5}}$	Costs of fine particulate matter $\begin{bmatrix} \epsilon \\ kg \end{bmatrix}$	23.2
$MC_{PM_{10}}$	Costs of particulate matter $\left[\frac{\epsilon}{kg}\right]$	15.01
MC_{CO_2}	Costs of carbon dioxide $\left[\frac{\epsilon}{kg}\right]$	0.105
MC_{NH_3}	Costs of ammonia $\left[\frac{\epsilon}{kg}\right]$	12.15
MC_{SO_2}	Costs of sulfur dioxide $\left[\frac{\epsilon}{kg}\right]$	15.44

Pigou Subsdiy

Registry data for congestion charge

Coefficient	Descriptions	Value
Panel A: Re	gistry Data	
n _E	Number of electric cars per person	.014
nı	Number of ICE cars per person	1.145
t _F c	Number of congestion-trips with electric cars	6.3
t_{I}^{c}	Number of congestion-trips with ICE cars	403.8
t _F ^o	Number of non-congestion-trips with electric cars	6.7
t ^c t ^c t ^o t ^o t ^o t ^o v ^c	Number of non-congestion-trips with ICE cars	433.2
v ^c	Average kilometers traveled on congestion zone trips	17.4km
v ^o	Average kilometers traveled on non-congestion zone	19km
	trips	

Mapping CZ formula

A2.Background	A3.Identification	A4.Additional Results	A4.Robustness checks	A5.Computation
0000	00	000000000	000000	○○○○●○

Estimates of congestion charge

Coefficient	Descriptions	Value
Panel B: En	npirical estimates	
$\frac{\partial n_E}{\partial \tau}$	Effect of congestion charge $ au$ on number of electric cars n_E	.0065
$\frac{\partial n_l}{\partial \tau}$	Effect of congestion charge τ on number of ICE cars n_l	0069
$rac{\partial t_E^o}{\partial au}$	Effect of congestion charge τ on number of outside congestion trips in electric cars t_F^o	1.1
$rac{\partial t_E^o}{\partial au}$	Effect of congestion charge τ on number of congestion trips in electric cars t_{E}^{c}	5.7
$rac{\partial t_l^o}{\partial au}$	Effect of congestion charge τ on number of outside congestion trips in ICE cars t_l^o	-14.6
$rac{\partial t_l^o}{\partial au}$	Effect of congestion charge τ on number of congestion trips in ICE cars t_i^c	-1.5
$\frac{\partial v^c}{\partial \tau}$	Effect of congestion charge τ on average kilometers on congestion trips v^c	086
$\frac{\partial v^o}{\partial \tau}$	Effect of congestion charge $ au$ on average kilometers	015

Nilsson, Tarduno & Tebbe

Externalities for congestion charge

Coefficient	Descriptions	Value
Panel C: Em	nission externalities $\left[\frac{\epsilon}{km}\right]$	
$\phi_{I} \cdot g$	Emission externalities for ICE cars	.04
$\phi_E \cdot e$	Emission externalities for electric cars	0
Panel D: Co	ngestion externalities $\left[\frac{\epsilon}{km}\right]$	
γ^{c}	Congestion externalities for inside cordon driving	.38
γ^{o}	Congestion externalities for outside cordon driving	.13

Mapping CZ formula