Peer Effects in Electric Car Adoption: Evidence from Sweden

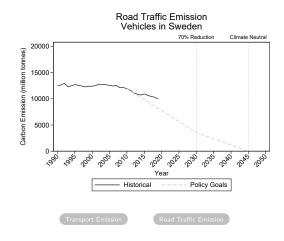
Sebastian Tebbe (IIES)

January 19, 2023

Context			
00000			

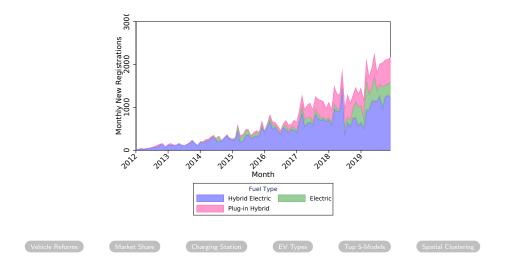
Transport Decarbonization

Climate targets:


▶ Sweden's long-term strategy is to achieve climate neutrality by 2045

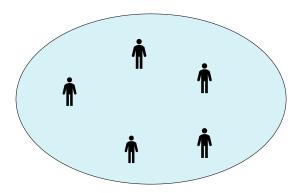
Context			Methodology			
00000	0000	000	0000000	00000000	000	0

Transport Decarbonization


Climate targets:

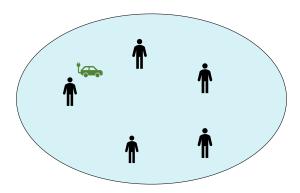
Sweden's long-term strategy is to achieve climate neutrality by 2045

Context			Methodology			
00000	0000	000	0000000	00000000	000	0


Evolution of Alternative Fuel Cars

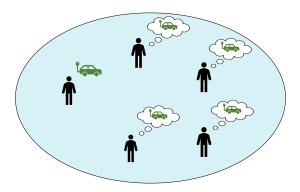
Context 00●000		Methodology 00000000		
Peer Ef	fects			

Research question:


▶ How does one new electric car influence the subsequent electric car adoption in the peer group?

Context 00●000		Methodology 00000000		
Peer Ef	fects			

Research question:


▶ How does one new electric car influence the subsequent electric car adoption in the peer group?

Context	Data	Identification	Methodology	Peer Effects	Implications	Conclusion
00●000	0000		0000000	000000000	000	O
Peer Ef	fects					

Research question:

▶ How does one new electric car influence the subsequent electric car adoption in the peer group?

Context 000●00		Methodology 00000000		
Contrib	utions			

Primary contribution:

▶ I provide causal estimates of peer effects in electric car adoption

Context		Methodology		
000000				

Primary contribution:

▶ I provide causal estimates of peer effects in electric car adoption

Ancillary contributions:

- 1. Data & networks:
 - \rightarrow I merge multiple Swedish admin data sets, including all vehicle ownership data

Context		Methodology		
000000				

Primary contribution:

▶ I provide causal estimates of peer effects in electric car adoption

Ancillary contributions:

- 1. Data & networks:
 - \rightarrow I merge multiple Swedish admin data sets, including all vehicle ownership data
 - $\rightarrow\,$ I construct peer groups based on workplaces, families, and neighborhoods

Context		Methodology		
000000				

Primary contribution:

▶ I provide causal estimates of peer effects in electric car adoption

Ancillary contributions:

- 1. Data & networks:
 - $\rightarrow\,$ I merge multiple Swedish admin data sets, including all vehicle ownership data
 - $\rightarrow\,$ I construct peer groups based on workplaces, families, and neighborhoods

2. Identification:

 \rightarrow I exploit the timing of leasing renewals using a Shift-share IV design (Adao *et al.*, 2019; Borusyak *et al.*, 2022)

Context		Methodology		
000000				

Primary contribution:

▶ I provide causal estimates of peer effects in electric car adoption

Ancillary contributions:

- 1. Data & networks:
 - ightarrow I merge multiple Swedish admin data sets, including all vehicle ownership data
 - $\rightarrow\,$ I construct peer groups based on workplaces, families, and neighborhoods

2. Identification:

 \rightarrow I exploit the timing of leasing renewals using a Shift-share IV design (Adao *et al.*, 2019; Borusyak *et al.*, 2022)

3. Policy implication:

 \rightarrow I document how peer effects alter the level and dynamics of optimal subsidies

Context			
000000			

- 1. One additional new peer EV triggers, in the next quarter:
 - \rightarrow .077 EVs in the workplace
 - \rightarrow .014 EVs in the family
 - \rightarrow .114 EVs in the neighborhood

Context		Methodology		
000000				

- 1. One additional new peer EV triggers, in the next quarter:
 - \rightarrow .077 EVs in the workplace
 - \rightarrow .014 EVs in the family
 - $\rightarrow~.114$ EVs in the neighborhood
- 2. Peer effects of EVs crowd out diesel and petrol cars

Context			
000000			

- 1. One additional new peer EV triggers, in the next quarter:
 - \rightarrow .077 EVs in the workplace
 - \rightarrow .014 EVs in the family
 - $\rightarrow~.114$ EVs in the neighborhood
- 2. Peer effects of EVs crowd out diesel and petrol cars
- 3. Peer effects generate new additional demand for EVs

Context	Data 0000	Identification	Methodology 0000000	Peer Effects 00000000	Implications	

- 1. One additional new peer EV triggers, in the next quarter:
 - \rightarrow .077 EVs in the workplace
 - \rightarrow .014 EVs in the family
 - $\rightarrow~.114$ EVs in the neighborhood
- 2. Peer effects of EVs crowd out diesel and petrol cars
- 3. Peer effects generate new additional demand for EVs
- 4. Peer effects are aligned with transmission of information

Context		Methodology		
000000				

- 1. One additional new peer EV triggers, in the next quarter:
 - \rightarrow .077 EVs in the workplace
 - \rightarrow .014 EVs in the family
 - $\rightarrow~.114$ EVs in the neighborhood
- 2. Peer effects of EVs crowd out diesel and petrol cars
- 3. Peer effects generate new additional demand for EVs
- 4. Peer effects are aligned with transmission of information
- 5. Peer effects reduce average carbon emission of car usage

Context		Methodology		
000000				

Empirical findings:

- 1. One additional new peer EV triggers, in the next quarter:
 - \rightarrow .077 EVs in the workplace
 - \rightarrow .014 EVs in the family
 - $\rightarrow~.114$ EVs in the neighborhood
- 2. Peer effects of EVs crowd out diesel and petrol cars
- 3. Peer effects generate new additional demand for EVs
- 4. Peer effects are aligned with transmission of information
- 5. Peer effects reduce average carbon emission of car usage

Policy implications:

▶ Optimal subsidy shifts upward in the presence of peer effects, but decreases along adoption curve

Context 00000●		Methodology 00000000		
	_			

Literature Review

This work speaks to two strands of literature:

- 1. Social networks and consumption behavior
 - → Consumption choices (De Giorgi *et al.*, 2020), education (Sacerdote, 2001; Graham, 2008), welfare participation (Dahl *et al.*, 2014, Hesselius *et al.*, 2009), charitable giving (DellaVigna *et al.*, 2012), product adoption (Bailey *et al.*, 2020), and criminal behavior (Bhuller *et al.*, 2018)

Context 00000●		Methodology 00000000		

Literature Review

This work speaks to two strands of literature:

- 1. Social networks and consumption behavior
 - → Consumption choices (De Giorgi *et al.*, 2020), education (Sacerdote, 2001; Graham, 2008), welfare participation (Dahl *et al.*, 2014, Hesselius *et al.*, 2009), charitable giving (DellaVigna *et al.*, 2012), product adoption (Bailey *et al.*, 2020), and criminal behavior (Bhuller *et al.*, 2018)

\rightarrow Environmental choices

• Diffusion of hybrid vehicles (Narayanan & Nair, 2013; Heutel & Muehlegger, 2015), solar panels (Bollinger & Gillingham, 2012), and water conservation practices of households (Bollinger *et al.*, 2020)

Context 00000●		Methodology 00000000		

Literature Review

This work speaks to two strands of literature:

- 1. Social networks and consumption behavior
 - → Consumption choices (De Giorgi *et al.*, 2020), education (Sacerdote, 2001; Graham, 2008), welfare participation (Dahl *et al.*, 2014, Hesselius *et al.*, 2009), charitable giving (DellaVigna *et al.*, 2012), product adoption (Bailey *et al.*, 2020), and criminal behavior (Bhuller *et al.*, 2018)

$\rightarrow\,$ Environmental choices

• Diffusion of hybrid vehicles (Narayanan & Nair, 2013; Heutel & Muehlegger, 2015), solar panels (Bollinger & Gillingham, 2012), and water conservation practices of households (Bollinger *et al.*, 2020)

2. Optimal policies with non-neoclassical agents

→ Social reputation (Benabou & Tirole, 2011), salience (Chetty *et al.*, 2009), inattention (Farhi & Gabaix, 2020), social norms (Allcott, 2011), nudges (Allcott & Kessler, 2019; Allcott & Taubinsky, 2015), social-image concerns (Bursztyn & Jensen, 2014, 2017), non-standard decision making (Bernheim & Taubinsky, 2018)

	Data ●000	Methodology 00000000		
Data				

Primary data sources are Swedish administrative data (2012 to 2020):

- 1. Swedish vehicle register (Fordonsregistret)
- 2. Longitudinal integrated database for health insurance and labor market studies (LISA)
- 3. Population and housing census (Folk- och bostadsräkningar)
- 4. Geographic database (Geografidatabasen)
- 5. Occupational register (*Yrkesregistret*)
- 6. Swedish business register (*Företagsregister*)

	Data ●000	Methodology 00000000		
Data				

Primary data sources are Swedish administrative data (2012 to 2020):

- 1. Swedish vehicle register (Fordonsregistret)
- 2. Longitudinal integrated database for health insurance and labor market studies (LISA)
- 3. Population and housing census (Folk- och bostadsräkningar)
- 4. Geographic database (Geografidatabasen)
- 5. Occupational register (*Yrkesregistret*)
- 6. Swedish business register (Företagsregister)

Supplemented with charging station network and financial incentives for cars:

- 1. Publicly-available database of charging stations from ChargeX (Uppladdning.nu)
- 2. Government incentives from the Swedish Tax Authority (*Skatteverket*), Swedish Transport Agency (*Transportstyrelsen*), and Statistics Sweden (*Statistiska centralbyrån*)

	Data					
000000	0000	000	0000000	00000000	000	0

Network Preparation

1. Workplace

- ightarrow Co-worker is defined as someone who works in the same plant
- \rightarrow Average number of co-workers: 45.25

	Data		Methodology			
000000	0000	000	0000000	00000000	000	0

Network Preparation

1. Workplace

- ightarrow Co-worker is defined as someone who works in the same plant
- \rightarrow Average number of co-workers: 45.25

2. Family

- $\rightarrow\,$ Relatives consists of all first- and second-degree family members
- \rightarrow Average number of relatives: 5.1

	Data		Methodology			
000000	0000	000	0000000	00000000	000	0

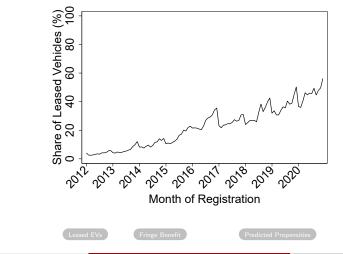
Network Preparation

1. Workplace

- ightarrow Co-worker is defined as someone who works in the same plant
- \rightarrow Average number of co-workers: 45.25

2. Family

- \rightarrow Relatives consists of all first- and second-degree family members
- \rightarrow Average number of relatives: 5.1
- 3. Neighborhood
 - \rightarrow All neighbors living within a 125m radius in urban and a 500m radius in rural areas
 - \rightarrow Average number of neighbors: 260.28

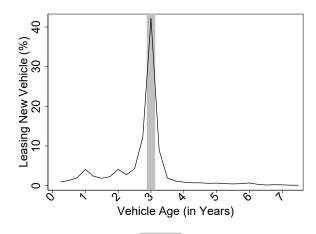

Network Statistics

Data 00●0	Methodology 00000000		
· • • •			

Car Leasing Market

Two important facts:

1. Substantial proportion of new cars are leased (as opposed to purchased)



Data 000●	Methodology 00000000		

Car Leasing Market

Two important facts:

- 1. Substantial proportion of new cars are leased (as opposed to purchased)
- 2. Leasing renewal is on a fixed three-year schedule

Event-Study

	Identification ●○○	Methodology 00000000		

Empirical Strategy

Equation of interest:

$$V_{i,q}^{e} = \theta V_{p_{-i},q_{-1}}^{e} + \delta X + \varepsilon_{i,q}$$

(1)

V^e_{i,q}: Individual i adopts new *electric* car in quarter q, ∈ {0,1}
 V^e_{p-i,q-1} = ∑_{j∈N,i≠j} V^e_{j,q-1}: New *electric* cars in peer group p
 X: Control variables

	Identification ●○○	Methodology 00000000		

Empirical Strategy

Equation of interest:

$$V_{i,q}^{e} = \theta V_{p_{-i},q_{-1}}^{e} + \delta X + \varepsilon_{i,q}$$

(1)

V^e_{i,q}: Individual i adopts new *electric* car in quarter q, ∈ {0,1}
 V^e_{p-i,q-1} = ∑_{j∈N,i≠j} V^e_{j,q-1}: New *electric* cars in peer group p
 X: Control variables

Coefficient of interest:

 \blacktriangleright θ : Peer effect

	Identification	Methodology		
	000			

Empirical Strategy

Equation of interest:

$$V_{i,q}^e = \theta V_{p_{-i},q_{-1}}^e + \delta X + \varepsilon_{i,q}$$

V^e_{i,q}: Individual i adopts new *electric* car in quarter q, ∈ {0,1}
 V^e_{p-i,q-1} = ∑_{j∈N,i≠j} V^e_{j,q-1}: New *electric* cars in peer group p
 X: Control variables

Coefficient of interest:

▶ θ : Peer effect

Model assumption:

- Social transmission of one quarter
- Linear-in-sums

Control Variables

Parameter Distincti

(1)

	Identification	Methodology		
	000			

In a network composed of 2 persons, the empirical model becomes:

$$V_{1p}^{e} = \alpha_1 + \theta_1 \mathbf{V}_{2p}^{e} + \gamma_1 X_{1p} + \delta_1 X_{2p} + \rho_1 W_p + e_{1p}$$
$$V_{2p}^{e} = \alpha_2 + \theta_2 \mathbf{V}_{1p}^{e} + \gamma_2 X_{2p} + \delta_2 X_{1p} + \rho_2 W_p + e_{2p}$$

	Identification ○●○	Methodology 00000000		

In a network composed of 2 persons, the empirical model becomes:

$$V_{1p}^{e} = \alpha_1 + \theta_1 \mathbf{V}_{2p}^{e} + \gamma_1 X_{1p} + \delta_1 X_{2p} + \rho_1 W_p + e_{1p}$$
$$V_{2p}^{e} = \alpha_2 + \theta_2 \mathbf{V}_{1p}^{e} + \gamma_2 X_{2p} + \delta_2 X_{1p} + \rho_2 W_p + e_{2p}$$

There are 3 types of identification concerns (Manski, 1993; Moffitt, 2001):

- 1. Reflection problem
 - \rightarrow Behavior of person 1 affects person 2, and vice versa ($V_1 \Leftrightarrow V_2$)

	Identification ○●○	Methodology 00000000		

In a network composed of 2 persons, the empirical model becomes:

$$V_{1p}^{e} = \alpha_1 + \theta_1 \mathbf{V}_{2p}^{e} + \gamma_1 X_{1p} + \delta_1 X_{2p} + \rho_1 W_p + e_{1p}$$
$$V_{2p}^{e} = \alpha_2 + \theta_2 \mathbf{V}_{1p}^{e} + \gamma_2 X_{2p} + \delta_2 X_{1p} + \rho_2 W_p + e_{2p}$$

There are 3 types of identification concerns (Manski, 1993; Moffitt, 2001):

- 1. Reflection problem
 - \rightarrow Behavior of person 1 affects person 2, and vice versa ($V_1 \Leftrightarrow V_2$)
- 2. Endogenous group membership
 - \rightarrow Individuals with similar characteristics sort into groups ($V_i \Leftrightarrow X_i$)

	Identification O●O		

In a network composed of 2 persons, the empirical model becomes:

$$V_{1p}^{e} = \alpha_1 + \theta_1 \mathbf{V}_{2p}^{e} + \gamma_1 X_{1p} + \delta_1 X_{2p} + \rho_1 W_p + e_{1p}$$
$$V_{2p}^{e} = \alpha_2 + \theta_2 \mathbf{V}_{1p}^{e} + \gamma_2 X_{2p} + \delta_2 X_{1p} + \rho_2 W_p + e_{2p}$$

There are 3 types of identification concerns (Manski, 1993; Moffitt, 2001):

- 1. Reflection problem
 - \rightarrow Behavior of person 1 affects person 2, and vice versa ($V_1 \Leftrightarrow V_2$)
- 2. Endogenous group membership
 - \rightarrow Individuals with similar characteristics sort into groups ($V_i \Leftrightarrow X_i$)

3. Correlated unobservables

 \rightarrow Not all relevant characteristics $(X_{1\rho}, X_{2\rho}, W_{\rho})$ are observed

	Identification		
	000		

Exogenous Shocks

Assign exogenous instrument Z_{1p} only to individual 1:

$$V_{1p}^{e} = \alpha_{1} + \beta Z_{1p} + \gamma_{1} X_{1p} + \delta_{1} X_{2p} + \rho_{1} W_{p} + e_{1p}$$
$$V_{2p}^{e} = \alpha_{2} + \theta_{2} \overline{V_{1p}^{e}} + \gamma_{2} X_{2p} + \delta_{2} X_{1p} + \rho_{2} W_{p} + e_{2p}$$

Assumption: $Z_{1p} \perp X_{1p}, X_{2p}, W_p, e_{1p}, e_{2p}$

		Identification				
000000	0000	000	0000000	00000000	000	0

Exogenous Shocks

Assign exogenous instrument Z_{1p} only to individual 1:

$$V_{1p}^e = \alpha_1 + \beta Z_{1p} + \gamma_1 X_{1p} + \delta_1 X_{2p} + \rho_1 W_p + e_{1p}$$
$$V_{2p}^e = \alpha_2 + \theta_2 \overline{V_{1p}^e} + \gamma_2 X_{2p} + \delta_2 X_{1p} + \rho_2 W_p + e_{2p}$$

Assumption: $Z_{1p} \perp X_{1p}, X_{2p}, W_p, e_{1p}, e_{2p}$

This solves for the 3 types of identification concerns:

1. Reflection problem

 \rightarrow Peer effect (θ_2) can be identified from the effect of Z_{1p} on V_{2p}

	Identification ○○●	Methodology 00000000		

Exogenous Shocks

Assign exogenous instrument Z_{1p} only to individual 1:

$$V_{1p}^{e} = \alpha_{1} + \beta Z_{1p} + \gamma_{1} X_{1p} + \delta_{1} X_{2p} + \rho_{1} W_{p} + e_{1p}$$
$$V_{2p}^{e} = \alpha_{2} + \theta_{2} \overline{V_{1p}^{e}} + \gamma_{2} X_{2p} + \delta_{2} X_{1p} + \rho_{2} W_{p} + e_{2p}$$

Assumption: $Z_{1p} \perp X_{1p}, X_{2p}, W_p, e_{1p}, e_{2p}$

This solves for the 3 types of identification concerns:

- 1. Reflection problem
 - \rightarrow Peer effect (θ_2) can be identified from the effect of Z_{1p} on V_{2p}
- 2. Endogenous group membership
 - \rightarrow Group membership is orthogonal to Z_{1p}

		Identification				
000000	0000	000	0000000	00000000	000	0

Exogenous Shocks

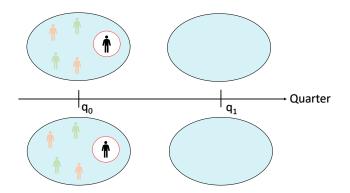
Assign exogenous instrument Z_{1p} only to individual 1:

$$V_{1p}^{e} = \alpha_{1} + \beta Z_{1p} + \gamma_{1} X_{1p} + \delta_{1} X_{2p} + \rho_{1} W_{p} + e_{1p}$$
$$V_{2p}^{e} = \alpha_{2} + \theta_{2} \overline{V_{1p}^{e}} + \gamma_{2} X_{2p} + \delta_{2} X_{1p} + \rho_{2} W_{p} + e_{2p}$$

Assumption: $Z_{1p} \perp X_{1p}, X_{2p}, W_p, e_{1p}, e_{2p}$

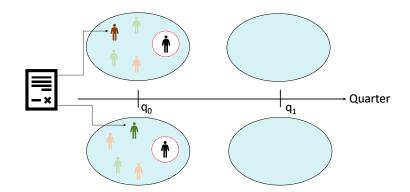
This solves for the 3 types of identification concerns:

- 1. Reflection problem
 - \rightarrow Peer effect ($heta_2$) can be identified from the effect of Z_{1p} on V_{2p}
- 2. Endogenous group membership
 - \rightarrow Group membership is orthogonal to Z_{1p}

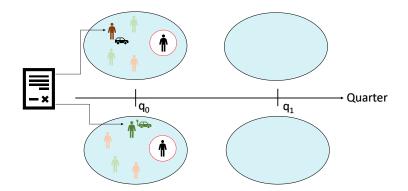

3. Correlated unobservables

 $\rightarrow Z_{1p}$ is orthogonal to all observed and unobserved covariates

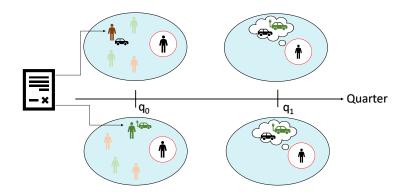
Identification Strategies


			Methodology			
000000	0000	000	0000000	00000000	000	0

Exogenous variation:

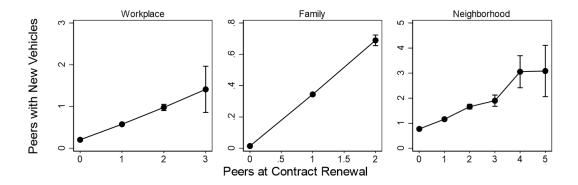

	Methodology ●0000000		

Exogenous variation: Timing of leasing renewal


	Methodology ●0000000		

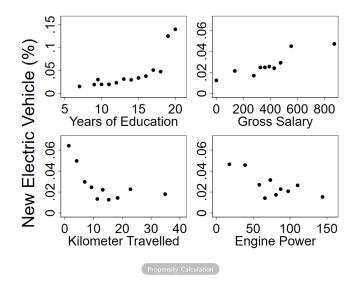
Exogenous variation: Timing of leasing renewal x Type of person at renewal

	Methodology ●0000000		


Exogenous variation: Timing of leasing renewal x Type of person at renewal

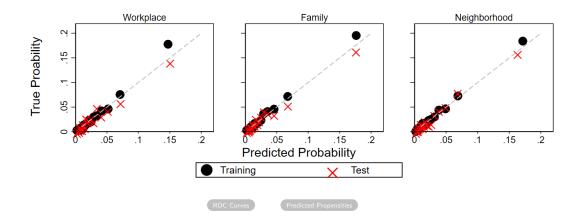
	Methodology		
	0000000		

Leasing Contract Renewal


Exogenous-component: Exploit timing of peers' car leasing renewals

			Methodology			
000000	0000	000	0000000	00000000	000	0

EV Adoption Prediction


Non-random-component: Exploit heterogeneity of leasers to adopt new EV

			Methodology			
000000	0000	000	0000000	00000000	000	0

Prediction Performance

Neural network accurately predicts EV take-up at contract renewal

	Methodology		
	0000000		

The shift-share design instruments peer EV adoption by the sum of peers at 3-year contract renewal and their propensity to adopt an EV at the contract renewal:

$$\underbrace{\bigvee_{p=i,q=1}^{e}}_{Peers new EV} = \beta_1 \sum_{j \in N} \underbrace{\bigvee_{j,q=1}^{3y}}_{Peers at contract renewal} \cdot \underbrace{\widehat{Pr}(V^e \mid V_{j,q=1}^{3y} = 1)}_{Propensity to buy EV} + \delta_1 V_{p_{-i},q_{-1}}^{3y} + \delta_2 \widehat{Pr}(V^e \mid V_{p_{-i},q_{-1}}^{3y} = 1) + \delta X_{i,q} + u_{i,q_{-1}}$$

$$(2)$$

	Methodology		
	0000000		

The shift-share design instruments peer EV adoption by the sum of peers at 3-year contract renewal and their propensity to adopt an EV at the contract renewal:

$$\underbrace{V_{p_{-i},q_{-1}}^{e}}_{Peers new EV} = \beta_{1} \sum_{j \in \mathbb{N}} \underbrace{V_{j,q_{-1}}^{3y}}_{Peers at contract renewal} \cdot \underbrace{\widehat{Pr}(V^{e} \mid V_{j,q_{-1}}^{3y} = 1)}_{Propensity to buy EV}$$
(2)

$$+ \delta_1 V^{3y}_{p_{-i},q_{-1}} + \delta_2 \widehat{Pr}(V^e | V^{3y}_{p_{-i},q_{-1}} = 1) + \delta X_{i,q} + u_{i,q_{-1}}$$

Intuition:

▶ Sums up all propensities among peers (share) at contract renewal (shift)

	Methodology		
	0000000		

The shift-share design instruments peer EV adoption by the sum of peers at 3-year contract renewal and their propensity to adopt an EV at the contract renewal:

$$\underbrace{V_{p_{-i},q_{-1}}^{e}}_{Peers new EV} = \beta_{1} \sum_{j \in N} \underbrace{V_{j,q_{-1}}^{3y}}_{Peers at contract renewal} \cdot \underbrace{\widehat{Pr}(V^{e} \mid V_{j,q_{-1}}^{3y} = 1)}_{Propensity to buy EV}$$
(2)

$$+ \delta_1 V^{3y}_{p_{-i},q_{-1}} + \delta_2 \widehat{\Pr}(V^e | V^{3y}_{p_{-i},q_{-1}} = 1) + \delta X_{i,q} + u_{i,q_{-1}}$$

Intuition:

▶ Sums up all propensities among peers (share) at contract renewal (shift)

Key control variables:

- 1. Number of peers at contract renewal (δ_1)
- 2. Average peer probability to buy EV (δ_2)

			Methodology			
000000	0000	000	0000000	00000000	000	0

The shift-share design instruments peer EV adoption by the sum of peers at 3-year contract renewal and their propensity to adopt an EV at the contract renewal:

$$\underbrace{V_{p-i,q-1}^{e}}_{Peers new EV} = \beta_1 \sum_{j \in \mathbb{N}} \underbrace{V_{j,q-1}^{3y}}_{Peers at contract renewal} \cdot \underbrace{\widehat{Pr}(V^e \mid V_{j,q-1}^{3y} = 1)}_{Propensity to buy EV}$$
(2)

$$+ \ \delta_1 \ V^{3y}_{p_{-i},q_{-1}} \ + \ \delta_2 \ \widehat{\Pr}(V^e | V^{3y}_{p_{-i},q_{-1}} = 1) \ + \ \delta X_{i,q} \ + \ u_{i,q_{-1}}$$

Intuition:

▶ Sums up all propensities among peers (share) at contract renewal (shift)

Key control variables:

- 1. Number of peers at contract renewal (δ_1)
- 2. Average peer probability to buy EV (δ_2)

Standard Errors:

► Clustered at peer-group level Standard errors comparison

 Context
 Data
 Identification
 Methodology
 Peer Effects
 Implications
 Conclusion

 000000
 0000
 000
 00000000
 0000
 000
 0

Identifying Assumption & Validity Checks

The exclusion restriction can formally be stated as follows: (Borusyak et al., 2022)

$$\mathbb{E}\left[\sum_{i} (\sum_{j \in N} V_{j,q_{-1}}^{3y} \cdot \widehat{Pr}(V^e | V_{j,q_{-1}}^{3y})_j)_i \cdot e_i \mid \mathbb{X}_{i,p_{-i}}\right] = 0$$
(3)

 Context
 Data
 Identification
 Methodology
 Peer Effects
 Implications
 Conclusion

 000000
 0000
 0000
 00000000
 0000
 000
 0

Identifying Assumption & Validity Checks

The exclusion restriction can formally be stated as follows: (Borusyak et al., 2022)

$$\mathbb{E}\left[\sum_{i} (\sum_{j \in N} V_{j,q_{-1}}^{3y} \cdot \widehat{Pr}(V^e | V_{j,q_{-1}}^{3y})_j)_i \cdot e_i \mid \mathbb{X}_{i,p_{-i}}\right] = 0$$
(3)

Assumption 1 (*Many uncorrelated shocks*):

- High effective sample size, sufficient dispersion, and large number of shocks Shock summary statistics Shock distribution
- No clustering of shocks in peer groups Shock correlations

 Context
 Data
 Identification
 Methodology
 Peer Effects
 Implications
 Conclusion

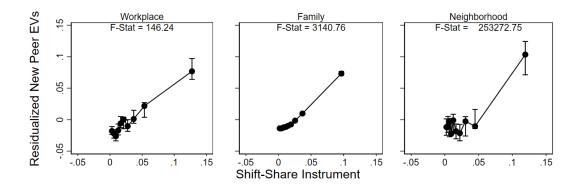
 000000
 0000
 0000
 00000000
 0000
 000
 0

Identifying Assumption & Validity Checks

The exclusion restriction can formally be stated as follows: (Borusyak et al., 2022)

$$\mathbb{E}\left[\sum_{i} (\sum_{j \in N} V_{j,q_{-1}}^{3y} \cdot \widehat{Pr}(V^e | V_{j,q_{-1}}^{3y})_j)_i \cdot e_i \mid \mathbb{X}_{i,p_{-i}}\right] = 0$$
(3)

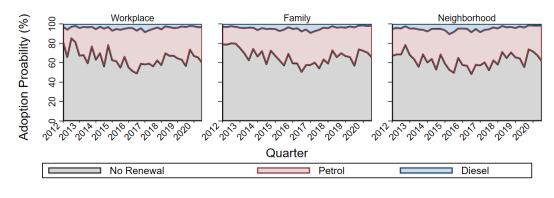
Assumption 1 (*Many uncorrelated shocks*):


- High effective sample size, sufficient dispersion, and large number of shocks (Shock summary statistics) (Shock distribution)
- No clustering of shocks in peer groups Shock correlations

Assumption 2 (*Quasi-random assignment of shocks*):

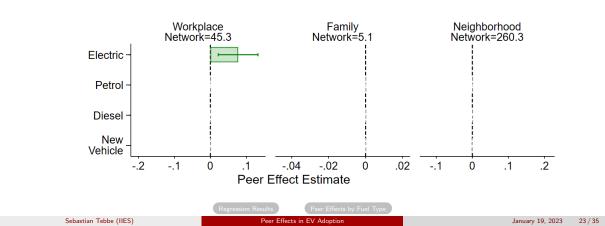
- Shocks do not predict demographics Balance test
- ▶ No prior EV adoption prior to renewal

		Methodology 000000●0		
First St	age			

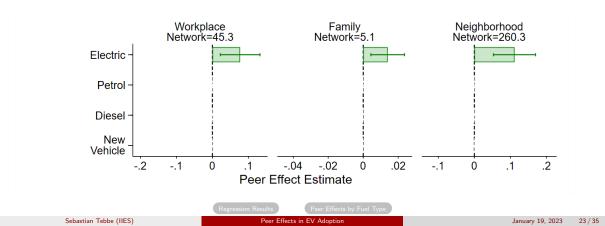

Shift-Share instrument is a strong predictor of EV adoption

			Methodology			
000000	0000	000	0000000	00000000	000	0

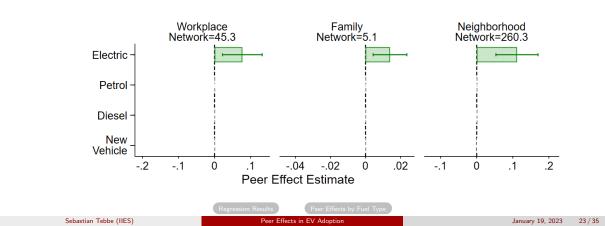
Interpretation of Treatment Effect


Control Group: 2/3 no new car, 1/3 new fossil fuel car

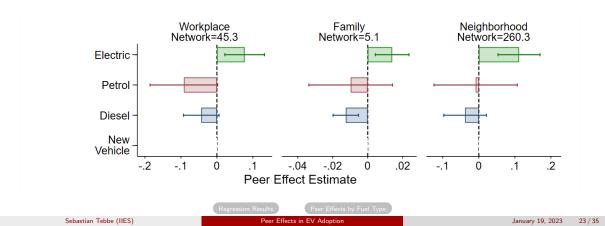
Control Group


			Methodology	Peer Effects		
000000	0000	000	0000000	•0000000	000	0

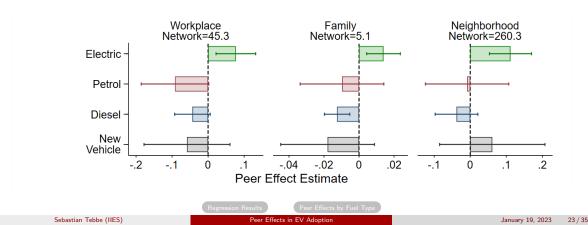
- ► One additional new peer EV triggers, in the next quarter:
 - $\rightarrow~.077$ EVs in the workplace


			Methodology	Peer Effects		
000000	0000	000	0000000	00000000	000	0

- ► One additional new peer EV triggers, in the next quarter:
 - $\rightarrow~.077$ EVs in the workplace
 - $\rightarrow~.014$ EVs in the family
 - ightarrow .111 EVs in the neighborhood

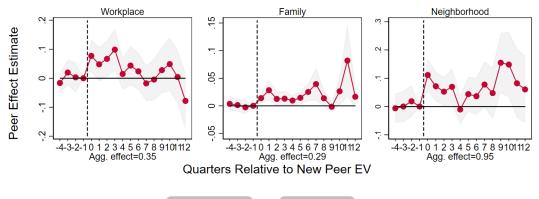

		Peer Effects	
000000		●00000000	

- ► One additional new peer EV triggers, in the next quarter:
 - \rightarrow .077 EVs in the workplace (.0017 EVs per co-worker)
 - \rightarrow .014 EVs in the family (.0027 EVs per relative)
 - \rightarrow .111 EVs in the neighborhood (.0004 EVs per neighbor)


		Peer Effects	
000000		●00000000	

- ▶ One additional new peer EV triggers, in the next quarter:
 - \rightarrow .077 EVs in the workplace (.0017 EVs per co-worker)
 - \rightarrow .014 EVs in the family (.0027 EVs per relative)
 - \rightarrow .111 EVs in the neighborhood (.0004 EVs per neighbor)
- ▶ Peer EVs tend to crowd out diesel and petrol cars

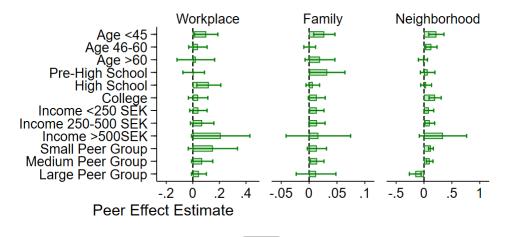
				Peer Effects		
000000	0000	000	0000000	00000000	000	0


- ► One additional new peer EV triggers, in the next quarter:
 - \rightarrow .077 EVs in the workplace (.0017 EVs per co-worker)
 - \rightarrow .014 EVs in the family (.0027 EVs per relative)
 - \rightarrow .111 EVs in the neighborhood (.0004 EVs per neighbor)
- ▶ Peer EVs tend to crowd out diesel and petrol cars
- ▶ Substitution in workplace and family, incremental demand in neighborhood

	Methodology 00000000	Peer Effects 0●0000000	

Peer Effect Dynamics

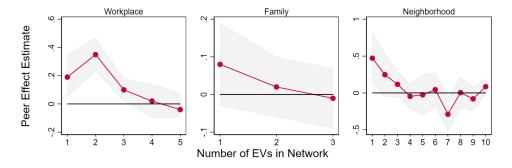
Social influence induces persistent, incremental demand for EVs


eneral Vehicle Dynamics

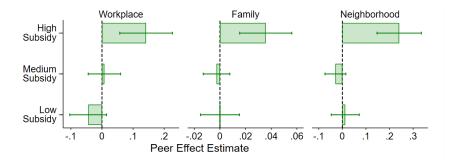
Constant Peer Groups

	Methodology	Peer Effects	
		00000000	

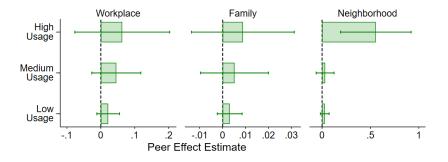
Heterogeneity in Peer Effects


Heterogeneity of peer effects in demographic variables

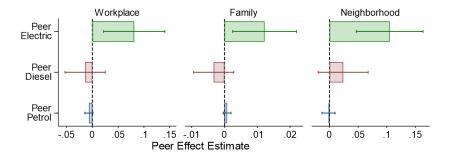
Geography


			Methodology	Peer Effects		
000000	0000	000	0000000	00000000	000	0

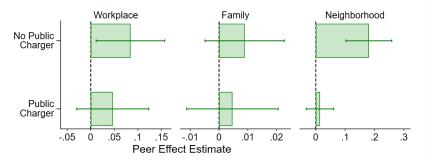
- 1. "Social learning" channel (Bikhchandani et al., 1992; Banerjee, 1992)
 - $\rightarrow\,$ Early peer EV adoption carries more information


			Methodology	Peer Effects		
000000	0000	000	0000000	00000000	000	0

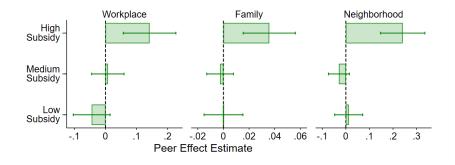
- 1. "Social learning" channel (Bikhchandani et al., 1992; Banerjee, 1992)
 - $\rightarrow\,$ Early peer EV adoption carries more information
 - $\rightarrow\,$ Information about the benefits and costs of EVs


			Methodology	Peer Effects		
000000	0000	000	0000000	00000000	000	0

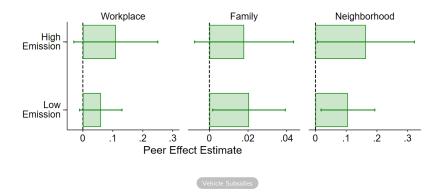
- 1. "Social learning" channel (Bikhchandani et al., 1992; Banerjee, 1992)
 - $\rightarrow\,$ Early peer EV adoption carries more information
 - $\rightarrow\,$ Information about the benefits and costs of EVs
 - $\rightarrow\,$ EVs with greater usage transmit more information


			Methodology	Peer Effects		
000000	0000	000	0000000	00000000	000	0

- 1. "Social learning" channel (Bikhchandani et al., 1992; Banerjee, 1992)
 - $\rightarrow\,$ Early peer EV adoption carries more information
 - $\rightarrow\,$ Information about the benefits and costs of EVs
 - $\rightarrow\,$ EVs with greater usage transmit more information
 - $\rightarrow\,$ Newly fossil fuel cars provide no information


			Methodology	Peer Effects		
000000	0000	000	0000000	00000000	000	0

- 1. "Social learning" channel (Bikhchandani et al., 1992; Banerjee, 1992)
 - $\rightarrow\,$ Early peer EV adoption carries more information
 - $\rightarrow\,$ Information about the benefits and costs of EVs
 - $\rightarrow\,$ EVs with greater usage transmit more information
 - $\rightarrow\,$ Newly fossil fuel cars provide no information
 - \rightarrow No learning about public charging infrastructure


			Methodology	Peer Effects		
000000	0000	000	0000000	00000000	000	0

- 2. "Social norms" channel
 - \rightarrow Social reputation: Peer effects are larger in high subsidy periods (Benabou & Tirole, 2006, 2011)

			Methodology	Peer Effects		
000000	0000	000	0000000	00000000	000	0

- 2. "Social norms" channel
 - \rightarrow Social reputation: Peer effects are larger in high subsidy periods (Benabou & Tirole, 2006, 2011)
 - \rightarrow Conformism: Low emission peer-groups exert larger peer effects (Bernheim 1994; Akerlof, 1997)

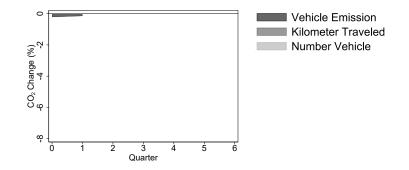
	Methodology	Peer Effects	
		00000000	

The literature suggests that social interactions can influence EV take-up through mediating factors:

- 1. "Observability" (Mas & Morretti, 2009; Bursztyn & Jensen, 2015; Karing, 2019)
 - \rightarrow Higher observability of EVs in neighborhoods that consist of houses (as opposed to apartments)

Context	Data	Identification	Methodology	Peer Effects	Implications	
000000	0000	000	0000000	0000000000	000	

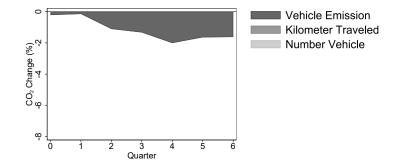
Environmental Impact


What are the carbon-emission changes of a peer EV adoption?

	Methodology 00000000	Peer Effects 000000●00	

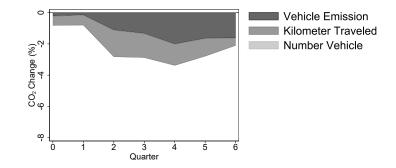
Environmental Impact

What are the carbon-emission changes of a peer EV adoption?


1. Effect on car choice (measured in average carbon emission per kilometer driven)

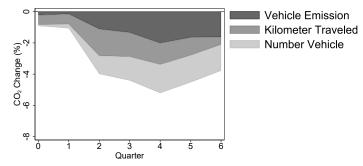
	Methodology 00000000	Peer Effects 000000●00	

What are the carbon-emission changes of a peer EV adoption?


1. Effect on car choice (measured in average carbon emission per kilometer driven)

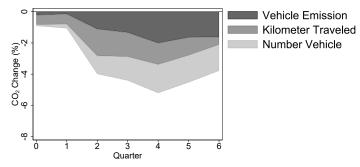
		Peer Effects	
		000000000	

What are the carbon-emission changes of a peer EV adoption?


- 1. Effect on car choice (measured in average carbon emission per kilometer driven)
- 2. Effect on driving behavior (measured in kilometer traveled)

				Peer Effects		
000000	0000	000	0000000	000000000	000	0

What are the carbon-emission changes of a peer EV adoption?


- 1. Effect on car choice (measured in average carbon emission per kilometer driven)
- 2. Effect on driving behavior (measured in kilometer traveled)
- 3. Effect on number of cars

				Peer Effects		
000000	0000	000	0000000	000000000	000	0

What are the carbon-emission changes of a peer EV adoption?

- 1. Effect on car choice (measured in average carbon emission per kilometer driven)
- 2. Effect on driving behavior (measured in kilometer traveled)
- 3. Effect on number of cars

Additional outcomes: Weight $\downarrow,$ engine power $\downarrow,$ fuel efficiency \uparrow

 Carbon Emission Model
 Carbon Coefficients
 Model Robustness
 Emission in Other Groups
 Second Hand Vehicles

 Sebastian Tebbe (IIES)
 Peer Effects in EV Adoption
 January 19, 2023
 29/35

		Peer Effects	
		000000000	

- 1. Alternative specifications
 - ightarrow Alternative estimation models, functional forms, outcomes, and sample restrictions (Alternative Specifications

			Methodology	Peer Effects		
000000	0000	000	0000000	000000000	000	0

- 1. Alternative specifications
 - \rightarrow Alternative estimation models, functional forms, outcomes, and sample restrictions (Alternative Specifications

- 2. Network structure
 - → Excluding overlap in peer groups Non-overlapping Network
 - → Restricting to constant peer groups Constant Peer Groups

			Methodology	Peer Effects		
000000	0000	000	0000000	000000000	000	0

- 1. Alternative specifications
 - \rightarrow Alternative estimation models, functional forms, outcomes, and sample restrictions (Alternative Specifications

- Network structure
 - → Excluding overlap in peer groups Non-overlapping Network
 - → Restricting to constant peer groups Constant Peer Groups
- Placebo specifications
 - → Insignificant for placebo co-worker and neighbors Placebo Peers
 - → Peers prior and post contract renewal entails no peer effects (Placebo Contract Renewal

			Methodology	Peer Effects		
000000	0000	000	0000000	000000000	000	0

- 1. Alternative specifications
 - → Alternative estimation models, functional forms, outcomes, and sample restrictions (Alternative Specification

- Network structure
 - → Excluding overlap in peer groups Non-overlapping Network
 - → Restricting to constant peer groups Constant Peer Groups
- Placebo specifications
 - → Insignificant for placebo co-worker and neighbors Placebo Peers
 - → Peers prior and post contract renewal entails no peer effects Placebo Contract Renewal
- 4. Propensity score prediction
 - \rightarrow Logistic regression, LASSO, and random forest display similar results

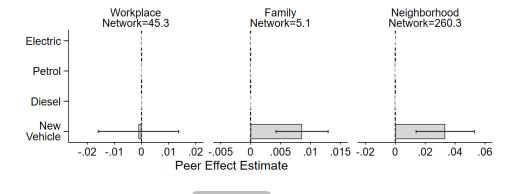
			Methodology	Peer Effects		
000000	0000	000	0000000	000000000	000	0

- 1. Alternative specifications
 - \rightarrow Alternative estimation models, functional forms, outcomes, and sample restrictions (Alternative Specification

- Network structure
 - → Excluding overlap in peer groups Non-overlapping Network
 - → Restricting to constant peer groups Constant Peer Groups
- Placebo specifications
 - → Insignificant for placebo co-worker and neighbors Placebo Peers
 - → Peers prior and post contract renewal entails no peer effects Placebo Contract Renewal
- 4. Propensity score prediction
 - \rightarrow Logistic regression, LASSO, and random forest display similar results
- 5. Control Group
 - → Non-renewal & fossil fuel control group Control Group

			Methodology	Peer Effects		
000000	0000	000	0000000	000000000	000	0

- 1. Alternative specifications
 - → Alternative estimation models, functional forms, outcomes, and sample restrictions (Alternative Specification


- Network structure
 - → Excluding overlap in peer groups Non-overlapping Network
 - → Restricting to constant peer groups Constant Peer Groups
- Placebo specifications
 - \rightarrow Insignificant for placebo co-worker and neighbors (Placebo Peers)
 - → Peers prior and post contract renewal entails no peer effects Placebo Contract Renewal
- 4. Propensity score prediction
 - \rightarrow Logistic regression, LASSO, and random forest display similar results
- 5. Control Group
 - → Non-renewal & fossil fuel control group Control Group
- 6. Varying peer dynamics
 - → Peer effects persist for various aggregate time horizons Varying Horizon

			Methodology	Peer Effects		
000000	0000	000	0000000	00000000	000	0

Peer Effects - New Cars

▶ One additional new peer car triggers, in the next quarter:

- \rightarrow -.001 cars in the workplace
- $\rightarrow~.009$ cars in the family
- \rightarrow .034 cars in the neighborhood

General Vehicle Results

		Methodology 0000000	Implications ●○○	
Pigou S	Subsidy			

Pigou prescription:

▶ Taxes should equal the marginal externality at the optimal resource allocation

		Methodology 0000000	Implications ●○○	
Pigou S	ubsidy			

Pigou prescription:

▶ Taxes should equal the marginal externality at the optimal resource allocation

Pigou motives:

Carbon emission, local pollution, learning-by-doing, and network externalities (Rapson & Muehlegger, 2021)

		Methodology 00000000	Implications ●00	
Pigou S	Subsidy			

Pigou prescription:

▶ Taxes should equal the marginal externality at the optimal resource allocation

Pigou motives:

Carbon emission, local pollution, learning-by-doing, and network externalities (Rapson & Muehlegger, 2021)

Pigou subsidy for EVs:

Subsidy au for EVs equals sum of externalities e_j ($au^* = e$) (Rapson & Muehlegger, 2022)

$$e = \sum_{j=1}^{J} \left[\underbrace{e_j(V^e)}_{EV} - \underbrace{e_j(V^m)}_{Counterfactual \ Car} \right]$$
(4)

	Methodology	Implications	
		000	

Modified Pigou

How does peer EV adoption affect externalities?:

- ▶ Level: Externality reduction through follow-on adoption
- ▶ Trajectory: Peer effects diminish along adoption

	Methodology 00000000	Implications O●O	

Modified Pigou

How does peer EV adoption affect externalities?:

- ▶ Level: Externality reduction through follow-on adoption
- ▶ Trajectory: Peer effects diminish along adoption

Modified Pigou:

$$\tau^*(\theta) = e \cdot [1 + \underbrace{\theta(v^*)}_{Peer \ effect}]$$

	Methodology 00000000	Implications O●O	

Modified Pigou

How does peer EV adoption affect externalities?:

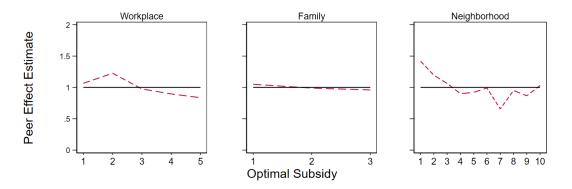
- ▶ Level: Externality reduction through follow-on adoption
- ▶ Trajectory: Peer effects diminish along adoption

Modified Pigou:

$$\tau^*(\theta) = e \cdot [1 + \underbrace{\theta(v^*)}_{Peer \ effect}]$$

Assumptions:

- 1. No peer effect on fossil fuel adoption
- 2. Peer adoption has no impact on peer's welfare


vlechanism

Fossil Fuel Adoption

	Methodology 00000000	Implications 00●	

Optimal Subsidies

Optimal subsidies shift up, but decrease along adoption curve

		Methodology 0000000		Conclusion
Conclus	ion			

Research question:

▶ I estimate causal peer effects of electric car adoption

	Methodology 00000000		Conclusion

Conclusion

Research question:

▶ I estimate causal peer effects of electric car adoption

Identification:

▶ Shift-share IV design, exploiting timing of leasing renewals

	Methodology 00000000		Conclusion

Conclusion

Research question:

▶ I estimate causal peer effects of electric car adoption

Identification:

▶ Shift-share IV design, exploiting timing of leasing renewals

Empirical findings:

- ▶ Substantial peer effects for co-worker, relatives, and neighbor
 - $\rightarrow\,$ Crowd out diesel and petrol cars
 - $\rightarrow\,$ Generate persistent, incremental demand for EVs
 - $\rightarrow\,$ Associated with transmission of information
 - $\rightarrow\,$ Reduce carbon emission & encourage behavioral changes

	Methodology 00000000		Conclusion

Conclusion

Research question:

▶ I estimate causal peer effects of electric car adoption

Identification:

▶ Shift-share IV design, exploiting timing of leasing renewals

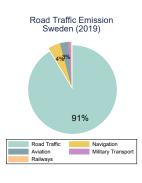
Empirical findings:

- ▶ Substantial peer effects for co-worker, relatives, and neighbor
 - $\rightarrow\,$ Crowd out diesel and petrol cars
 - $\rightarrow\,$ Generate persistent, incremental demand for EVs
 - $\rightarrow\,$ Associated with transmission of information
 - $\rightarrow\,$ Reduce carbon emission & encourage behavioral changes

Policy implications:

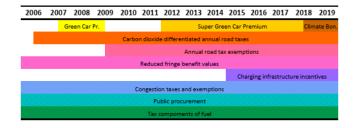
▶ Optimal subsidy shifts upward in the presence of peer effects, but decrease along adoption curve

A1. Data			
0000000000000000			

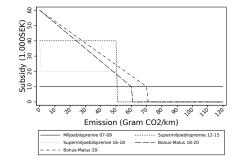

EU Transport Emission

Transport Decarbonization

A1. Data			
000000000000000			


Road Traffic Emission

Transport Decarbonization


A1. Data 00●0000000000000				
Vehicle Refo	rms			

Main instruments of the Swedish vehicle reforms include various vehicle subsidies, annual road taxes and exemptions, reduced fringe benefit values and charging infrastructure incentives:

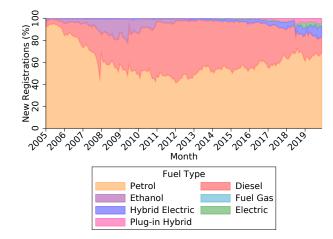
A1. Data 000●00000000000			

Vehicle Subsidies

Mechanisms

A1. Data 0000●0000000000				
Fringe Bene	fit			

The fringe benefit value is calculated as


Fringe Benefit Value = $p \cdot 0.09 + \% PBV + 0.75 \cdot GB \cdot p$ (5)

Year	Price Base Value (SEK)	% of Price Base Value	Government Bond Interest Rate (%)
2012	40,000	31.7	1.65
2013	44,500	31.7	1.49
2014	44,000	31.7	2.09
2015	44,500	31.7	0.90
2016	44,300	31.7	0.65
2017	44,800	31.7	0.50
2018	45,500	29	0.50
2019	46,500	29	0.51
2020	47,300	29	0.50

Leasing

A1. Data			
000000000000000000			

Evolution of Alternative-Fueled Cars

A1. Data 000000●00000000			

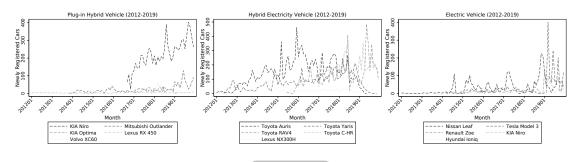
Charging Station Network

A1. Data 000000000000000			

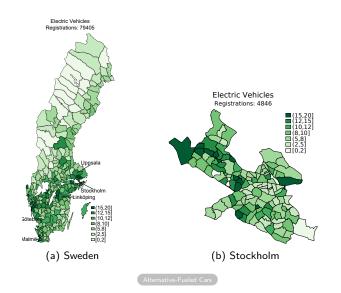
Types of Electric Cars

Electric vehicles can be categorized into 3 types:

- 1. All-Electric Vehicle (EV)
 - \rightarrow Rechargeable battery (no secondary source of propulsion)
- 2. Plug-in Hybrid Electric Vehicle (PHEV)
 - $\rightarrow\,$ Internal combustion engine + rechargeable battery


3. Hybrid Electric Vehicle (HEV)

 \rightarrow Internal combustion engine + electric propulsion system (charged through regenerative braking)


A1. Data			
000000000000000			

Top 5-Models

A1. Data						
0000000000000000	000	0000000000	00000000000	0000000	00	00

Spatial Clustering

A1. Data						
000000000000000	000	000000000	0000000000	0000000	00	00

Descriptive Statistics

	Mean	Std. dev.	Min	Max	Obs.
A.Socio-Demographic Data					
Age	47.09	18.15	18	117	65,277,13
Female	0.50	0.50	0	1	65,277,13
Annual Gross Salary (in tho.)	323.61	265.32	0	81,443	65,277,13
Family Disposable Income (in tho.)	231.38	619.74	0	1,039,452	65,277,13
Annual Unemployment Days	5.06	31.69	0	366	65,277,13
Self-Employment (in %)	0.07	0.26	0	1	65,277,13
Number of Retire	0.20	0.40	0	1	65,277,13
Married or Cohabitant (in %)	0.57	0.50	0	1	65,277,13
At Least 1 Child (in %)	0.45	0.50	0	1	65,277,13
Years of Education	12.10	2.62	7	20	64,001,85
Commuting Distance	23.86	85.56	0	1,738	65,277,13
Share Commuting	0.67	0.47	0	1	65,277,13
At least 1 Vehicle (in %)	0.41	0.49	0	1	65,277,13
Average Number of Vehicles	0.49	0.67	0	3	65,277,13
3.Vehicle Data					
Vehicle Kilometer Travelled	11993.95	7674.94	0	497,937	32,288,96
Leased Vehicles (%)	0.02	0.15	0	1	32,288,96
Vehicle Age	10.73	8.67	0	116	32,288,93
Service Weight (kg)	1470.42	264.37	0	17,910	32,288,96
Engine Power (KW)	102.52	38.09	0	1,777	32,288,96
Vehicle Fuel Efficiency (I/100km)	5.97	3.08	0	66	32,288,96
Vehicle Carbon Emission (g/km)	147.69	73.97	0	500	32,288,96
C.Charging Infrastructure Data					
Charging Station	0.33	1.45	0	57	1,885,835
Charging Station Installation	0.04	0.19	0	1	1,885,835
Number of Plug-in	1.16	8.87	0	555	1,885,835
Power Wattage (kWh)	17.26	19.20	.43	350	1,885,835

Descriptive Statistics

	A1. Data 0000000000000000		A3.Peer EV Instrument 0000000000	A4.Additional Results 00000000000	A5.Robustness 0000000		
--	------------------------------	--	-------------------------------------	--------------------------------------	--------------------------	--	--

Leasing Statistics

	Population			er	
	Mean	Std. Dev.	Owner	New Vehicle	Leased Vehicl
A.Socio Demographic Variables					
Age	47.10	18.13	51.11	50.75	44.39
Female	0.50	0.50	0.38	0.36	0.42
Gross Salary (in tho.)	324.05	266.23	373.65	431.55	430.09
Disposable Income (in tho.)	231.62	622.78	249.17	311.98	266.09
Annual Unemployment Days	5.07	31.70	3.66	1.90	2.65
Self-Employment (in %)	0.07	0.26	0.05	0.06	0.04
Married or Cohabitant (in %)	0.57	0.50	0.66	0.71	0.67
At Least 1 Child (in %)	0.44	0.50	0.35	0.34	0.40
Years of Education	12.10	2.62	12.17	12.46	12.82
Share Commute (in %)	0.67	0.47	0.71	0.76	0.88
Distance Commute	23.88	85.54	24.10	26.47	30.25
B.Vehicle Attributes					
Vehicle Carbon Emission (g/km)	60.49	83.75	147.39	132.73	121.28
Engine Power (KW)	41.60	54.48	101.38	103.81	91.66
Vehicle Fuel Efficiency (I/100km)	2.45	3.42	5.98	5.42	5.10
Service Weight (kg)	601.34	737.62	1465.34	1495.75	1407.88
Electric Vehicle	0.01	0.08	0.02	0.07	0.06
Vehicle Kilometer Travelled	6053.96	9777.47	14752.31	10730.68	15599.27
Number of Observation	65,5	46,382	26,898,528	1,218,648	699,114

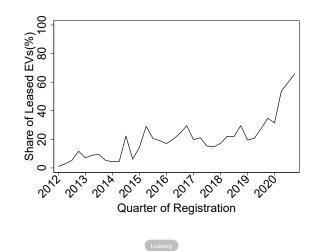
Descriptive Statistics

A1. Data						
000000000000000000000000000000000000000	000	000000000	0000000000	0000000	00	00

Leaser Comparison

	Population			Vehicle Owner		
	Mean	Std. Dev.	Owner	New Vehicle	Leased Vehicle	
A.Socio Demographic Variables						
Age	47.10	18.13	51.11	50.75	44.39	
Female	0.50	0.50	0.38	0.36	0.42	
Gross Salary (in tho.)	324.05	266.23	373.65	431.55	430.09	
Disposable Income (in tho.)	231.62	622.78	249.17	311.98	266.09	
Annual Unemployment Days	5.07	31.70	3.66	1.90	2.65	
Self-Employment (in %)	0.07	0.26	0.05	0.06	0.04	
Married or Cohabitant (in %)	0.57	0.50	0.66	0.71	0.67	
At Least 1 Child (in %)	0.44	0.50	0.35	0.34	0.40	
Years of Education	12.10	2.62	12.17	12.46	12.82	
Share Commute (in %)	0.67	0.47	0.71	0.76	0.88	
Distance Commute	23.88	85.54	24.10	26.47	30.25	
B.Vehicle Attributes						
Vehicle Carbon Emission (g/km)	60.49	83.75	147.39	132.73	121.28	
Engine Power (KW)	41.60	54.48	101.38	103.81	91.66	
Vehicle Fuel Efficiency (I/100km)	2.45	3.42	5.98	5.42	5.10	
Service Weight (kg)	601.34	737.62	1465.34	1495.75	1407.88	
Electric Vehicle	0.01	0.08	0.02	0.07	0.06	
Vehicle Kilometer Travelled	6053.96	9777.47	14752.31	10730.68	15599.27	
Number of Observation	65,54	46,382	26,898,528	1,218,648	699,114	

A1. Data 00000000000000000000			


Network Statistics

	Mean	Std. dev.	Min	Max	Obs.
A.Workplace Network					
A. WORKPIACE NELWORK					
Number of Co-worker	45.25	37.55	5	150	98,068,936
New Car Registrations	6.92	8.02	0	183	98,068,936
New EV Registrations	0.48	1.06	0	63	98,068,936
Contract Renewal	0.64	1.23	0	22	98,068,936
B.Family Network					
Number of Relatives	5.10	4.04	1	171	231,971,072
New Car Registrations	0.55	1.01	0	27	231,971,072
New EV Registrations	0.04	0.21	0	10	231,971,072
Contract Renewal	0.05	0.26	0	9	231,971,072
C.Neighborhood Network					
Number of Neighbors	260.28	327.01	5	2,853	243,356,013
New Car Registrations	27.79	30.48	0	303	243,356,013
New EV Registrations	1.85	2.67	0	26	243,356,013
Contract Renewal	2.52	3.58	0	41	243,356,013

Network Preparation

A1. Data 000000000000000			

Leasing EVs

A2.Identification ●00			

Control Variables

Demographics	Network Statistics	Charging Network	Past cars
Age	Age	New Installations	Partly Electric
Gender	Gender	Number of Plug-In	Alt. Fueled
Salary	Salary	Sum Chargers	Total Vehicles
Income	Income	Charger Capacity	Kilometer Traveled
Unemployment Days	Unemployment Days	Charging Time	Engine Power [hp]
Self-Employed	Self-Employed		Service Weight [kg]
Retired	Retired		Fuel Efficiency [Lit/100km]
Married/Cohabitant	Married/Cohabitant		
Children	Children		
Years Education	Years Education		
Type of Education	Type of Education		
At Contract Renewal	Avg. Peers at Contract Renewal		
	(Avg. Propensity to Buy EV)		

Empirical Strategy

	A2.Identification ○●○			
Parameter D	istinction			

Individuals belonging to the same group tend to behave similarly due to 3 effects: (Manski, 1993; Brock & Durlauf, 2001, Moffitt; 2001)

- 1. Causal (endogenous) peer interactions:
 - \rightarrow Peer electric car adoption (θ)
- 2. **Contextual** (*exogenous*) interactions:
 - $\rightarrow\,$ Exogenous characteristics of the social network
- 3. Correlated effects:
 - \rightarrow Endogenous sorting into peer-group
 - $\rightarrow\,$ Correlated unobserveables

Empirical Strategy

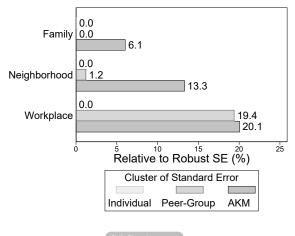
Prior techniques to measure endogenous peer effects:

- 1. Random peers: Contexts in which individuals are exogenously assigned into different or new social networks and environments
 - \rightarrow Ex.: Shift assignment of cashiers (Mas & Moretti, 2009)
- 2. Structural endogeneity: Structural frameworks that combine a model of peer effects with a model of network formation
 - \rightarrow Ex.: Network formation model (Goldsmith-Pinkham & Imbens, 2013)
- 3. Random shocks: Exogenous variation within naturally occurring, self-chosen social network
 - \rightarrow Ex.: Parental leave take-up (Dahl *et al.*, 2014)

Exogenous Shocks

		A3.Peer EV Instrument ●000000000		
Propensity C	Calculation			

Non-random component: Using a neural network approach, equation (6) estimates the propensity to buy a new EV conditioning on being at the 3- year leasing renewal: (Belloni, Chernozhukov, & Hansen, 2014; Mullainathan & Spiess, 2017; Peysakhovich & Eckles, 2017; Athey, 2018; Chernozhukov *et al.*, 2018)

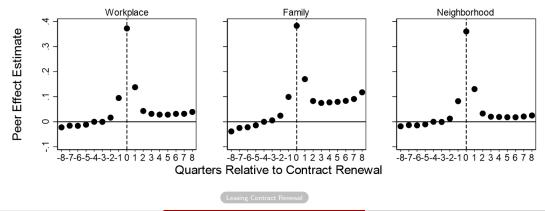

$$\hat{Pr}(V^{e} \mid V_{i,q_{-1}}^{3y} = 1)_{i,q_{-1}} = \sum_{m \in M} g_{m}(\omega_{m}^{T} X_{q_{-1}})$$
(6)

 X: Control variables (demographic variables, charging infrastructure and network characteristics, previous car attributes)

EV Adoption Prediction

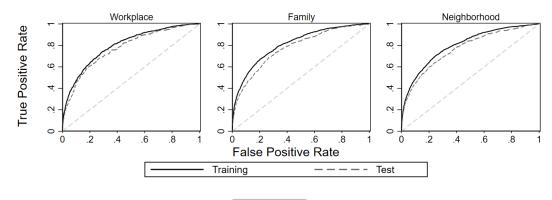
	A3.Peer EV Instrument 000000000		

Comparison of standard errors


Shift-Share Instrumer

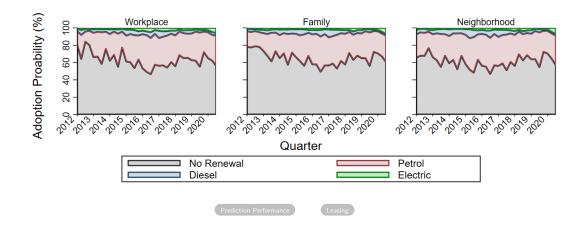
	A3.Peer EV Instrument		
	000000000		

Event-Study Analysis

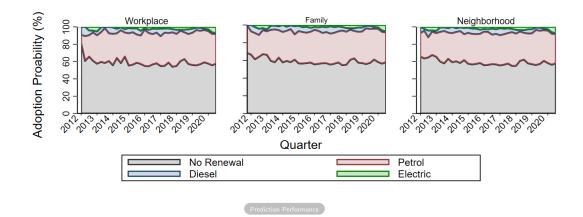

To estimate the effect of the contract renewal, I perform a quarterly event-study analysis relative to the 12-quarter contract renewal for quarters $\tau = -8, ..., 8$:

$$\overline{V}_{i,q} = \sum_{\tau=-8}^{8} \beta_{\tau} V_{i,12+\tau} + \phi_t + \phi_p + \varepsilon_{i,q}$$

	A3.Peer EV Instrument 000●000000		


ROC Curves

Prediction Performance

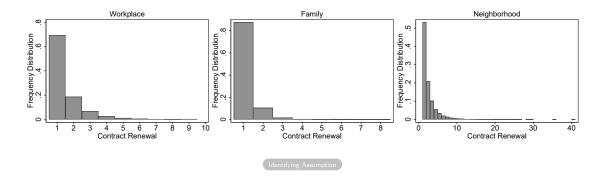

00000000000000000000000000000000000000	0000000	00	00

Predicted Propensities

		A3.Peer EV Instrument				
000000000000000	000	000000000	0000000000	0000000	00	00

Adoption Propensities

	A3.Peer EV Instrument		
	000000000		


Shock summary statistics

	A.Workplace	B.Family	C.Neighborhood
Mean	0	0	0
Standard Deviation	.0196	.0142	.4438
Interquartile range	.0017	.0006	.3269
Effective sample size (1/HHI) Across peer-groups and quarters	358,077	85,416	31,777,512
Largest weights Across peer-groups and quarters	<.0001	<.0001	<.0001
Observation counts N(peer-group shocks) N(peer-groups)	27,619 252,352	53,320 7,314,474	50,409 4,696

Identifying Assumption

	A3.Peer EV Instrument		

Shock distribution

	A3.Peer EV Instrument 0000000000		

Shock intra-class correlations

A.Workplace B.Family C.Neighborhood

Shock ICCs Across peer-groups

Identifying Assumption

A1. Data 00000000000000000000000000000000000	A3.Peer EV Instrument	A4.Additional Results	A5.Robustness	

Shock-balance test

	A. Workplace	B. Family	C. Neighborhood
	2SLS(1)	2SLS(2)	2SLS(3)
A.Socio-Demographics:			
Person Age	2.3817	84.3751	.1159
Terson Age	(8.8859)	(71.6883)	(.1009)
Female	1139	-1.6481	.0001
	(.3044)	(2.4618)	(.0001)
Gross Salary	0000	0000	0000***
· · · · · · · · · · · · · · · · · · ·	(.0000)	(.0000)	(.0000)
Disposable Income	27.5184	108.7367	-3.4742
	(144.7592)	(555.6870)	(2.8974)
Unemployment Days	-5.9028	`0000 ´	5073* [*]
	(25.6098)	(.0000)	(.2502)
Self-Employed	.0397	-1.0239	0003
	(.1022)	(1.4272)	(.0023)
Retired	1470	-1.1761	0010
	(.3050)	(1.3618)	(.0022)
Married	0000	1.6542	0018
	(.0000)	(2.1444)	(.0017)
Children	1042	-1.3137	.0015
	(.2953)	(1.8665)	(.0017)
Years Education	0592	.9610	0391*
	(.9206)	(10.0416)	(.0206)

Identifying Assumption

Sebastian Tebbe (IIES)

	A4.Additional Results		
	0000000000		

Regression Results

	OLS	First Stage	Seco	ond Stage
	(1)	(2)	Total(3)	Per Capita(4)
A.Workplace Network				
Peer Coefficient	.0274*** (.0061)	1.1319*** (.0816)	.0771*** (.0281)	.0017*** (.0006)
%-Effect	194.32	8033.43	546.92	546.92
Mean Dep. Variable	.014	.014	.014	0
B.Family Network				
Peer Coefficient	.0060*** (.0005)	1.1695*** (.0169)	.0140*** (.0049)	.0027*** (.0010)
%-Effect	(.0003) 413.69	80945.65	966.66	966.66
Mean Dep. Variable	.001	.001	.001	0
C.Neighborhood Networ	·k			
Peer Coefficient	.0594***	1.4960***	.1114***	.0004***
	(.0023)	(.1029)	(.0298)	(.0001)
%-Effect	80.26	2022.11	150.64	150.64
Mean Dep. Variable	.074	.074	.074	0

	A4.Additional Results		
	0000000000		

Peer Effects by Fuel Type

Petrol Diesel Electric All Vehicles										
	(1)	(2)	(3)	(4)						
			. ,							
A.Workplace Network										
Peer Coefficient	0918*	0436*	.0771***	0585						
	(.0479)	(.0252)	(.0281)	(.0609)						
%-Effect	-69.457	-67.84	546.924	-27.729						
B.Family Network										
Peer Coefficient	0097	0013***	.0139***	0089						
	(.0085)	(.0004)	(.0049)	(.0131)						
%-Effect	881.095	65.212	467.463	596.715						
C.Neighborhood Netv	vork									
Peer Coefficient	0088	0381	.1114***	.0611						
	(.0590)	(.0302)	(.0298)	(.0745)						
%-Effect	-1.338	-11.418	150.636	5.708						
Mean Dep. Variable	.659	.334	.074	1.07						
	Р	eer Effects								

	A4.Additional Results		
	0000000000		

Peer Effects by Area

	OLS	First Stage	Seco	ond Stage
	(1)	(2)	Total(3)	Per Capita(4)
A.Workpl	ace Network	τ		
Urban	.0236***	1.2905***	.0709**	.0016**
	(.0025)	(.0939)	(.0332)	(.0007)
Rural	.0285***	1.1808***	.0746**	.0017**
	(.0029)	(.0100)	(.0352)	(8000.)
B.Family	Network			
Urban	.0055***	1.2413***	.0130**	.0025**
	(.0007)	(.0232)	(.0060)	(.0012)
Rural	.0063***	1.0877***	.0065	.0013
	(.0006)	(.0241)	(.0083)	(.0016)
C.Neighbo	orhood Netv	vork		
Urban	.0116***	1.9577***	.0722***	.0012***
	(.0023)	(.1145)	(.0242)	(.0002)
Rural	.0254***	2.2604***	.1369***	.0038***

Sebastian Tebbe (IIES)

(.0031)

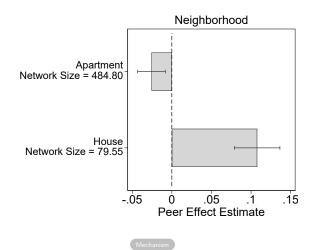
Heterogeneity

(.0396)

(.0002)

(.1921)

	A4.Additional Results		


Peer Effect Channels

		Social Netw	orks
	A.Workplace	B.Family	C.Neighborhood
1A.Information about Benefits			
Subsidized EVs	.0905***	.0207***	.1465***
	(.0126)	(.0064)	(.0580)
Non-Subsidized EVs	.0270	.0186	.0602
	(.0783)	(.0159)	(.0826)
1B.Public Charging Infrastructure			
Residential Public Charger	.0466	.0047	.0142
0	(.0390)	(.0081)	(.0239)
No Residential Public Charger	.0842**	.0089 [´]	.1807***
	(.0371)	(.0070)	(.0399)
2.Observability			
House	.0916***	.0049	.3328***
	(.0311)	(.0061)	(.0519)
Apartment	.0144	.0135	1111* ^{**} *
	(.0503)	(.0110)	(.0269)
3.Environmental Norms			
Low Carbon Emitting Fleet (<33%)	.1101***	.0143**	.1640**
о (),	(.0361)	(.0096)	(.0077)
High Carbon Emitting Fleet (>67%)	.0604	.0091	.1057**
	(.0715)	(.0131)	(.0806)

Mechanism

	A4.Additional Results		

Observability

	A4.Additional Results		
	00000000000		

Cross Peer Effects

	Petrol	Diesel	Electric	All Vehicles
	(1)	(2)	(3)	(4)
A.Workplace Network				
Peer Petrol	0497***	0142***	- 0067*	0708***
	(.0102)	(.0055)	(.0040)	(.0125)
Peer Diesel	0254	0785*	0142	- 1176
	(.0555)	(.0449)	(.0199)	(.0786)
Peer Electric	- 1443***	- 0776***	.0811***	1412**
	(.0499)	(.0277)	(.0303)	(.0642)
Mean Dep. Variable	.132	.064	.014	.211
•				
B.Family Network				
Peer Petrol	.0197***	0020**	.0008	.0186***
	(.0020)	(.0008)	(.0006)	(.0022)
Peer Diesel	.0306***	.0142**	0033	.0414***
	(.0113)	(.0056)	(.0031)	(.0127)
Peer Electric	.0002	0157***	.0122**	0024
	(.0117)	(.0035)	(.0050)	(.0131)
Mean Dep. Variable	`.013´	.007	.001	.021
C.Neighborhood Netw	vork			
Peer Petrol	0486***	- 0461***	0018	0969***
	(.0165)	(.0083)	(.0058)	(.0204)
Peer Diesel	2372***	- 0596	.0239	2749***
1 661 216361	(.0675)	(.0372)	(.0222)	(.0830)
Peer Electric	0295	0146	.1051***	.0581
	(.0611)	(.0317)	(.0298)	(.0782)
Mean Dep. Variable	.659	.334	.074	1.07

Mechanism

	A4.Additional Results		
	00000000000		

Carbon Emission Model

A person's total car-related carbon emissions in a given quarter equals:

$$CO_{2,i,q} = \overline{KM_{i,q}} \cdot \overline{V_{i,q}^{CO_2}} \cdot N_{i,q}$$

$$(7)$$

The person's carbon emission change through the peer effect of adopting a new electric car :

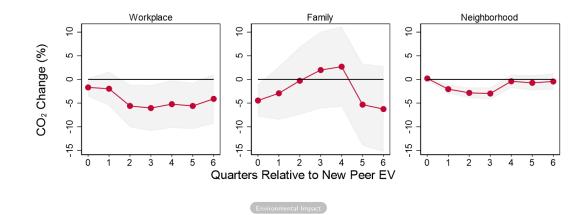
• $V_{i,q}^{CO_2}$ Average carbon emission of the person's cars

- ▶ $\overline{KM_{i,q}}$: Average car kilometer traveled per person
- \triangleright $N_{i,q}$: Number of car per person

Environmental Impact

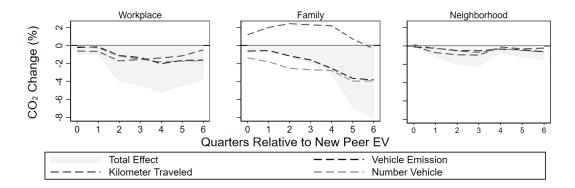
[▶] $\theta_{KM}^{e}, \theta_{CO_2}^{e}, \theta_N^{e}$: Peer effect on the total car kilometer traveled, average carbon emission, and number of cars

			A4.Additional Results			
00000000000000000	000	000000000	00000000000	0000000	00	00


Environmental Impact

			(arbon Emissio	on			
	q	q1	q+2	q+3	q+4	q+5	q+6	
Peer Coefficient	4751	3211	-2.3543***	-2.8012***	-4.1958***	-3.4077***	-3.3362***	
Feer Coefficient	(.3682)	(.6104)	(.8139)	(.9006)	(1.0007)	(1.0943)	(1.2443)	
%-Effect	(.3062)	48	-3.52	-4.14	-6.16	-4.97	-4.83	
Mean Dep. Variable	72	40	-3.52 66.95	-4.14 67.59	-0.10	-4.97	-4.63 69.06	
wean Dep. Variable	05.07	00.5	00.95	07.59	08.00	08.55	09.00	
		Vehicle Kilometer Traveled						
	q	q+1	q+2	q+3	q+4	q+5	q+6	
Peer Coefficient	-28.0527**	-29.9844	-77.7567***	-69.3440**	-61.0044*	-50.5949	-21.2635	
	(11.9542)	(20.3023)	(27.5086)	(29.7384)	(32.1308)	(33.2077)	(34.9169)	
%-Effect	-1.96	-2.08	-5.35	-4.73	-4.13	-3.41	-1.42	
Mean Dep. Variable	1431.71	1443	1454.49	1466.48	1475.41	1484.61	1494.38	
		Number of Vehicle						
	q	q+1	q+2	q+3	q+4	q+5	q+6	
Peer Coefficient	0015	0045	0198**	0259***	0308***	0291***	0279**	
	(.0037)	(.0062)	(.0080)	(.0085)	(.0091)	(.0101)	(.0117)	
%-Effect	28	81	-3.56	-4.61	-5.43	-5.09	-4.85	
Mean Dep. Variable	.55	.55	.56	.56	.57	.57	.58	
wear Dep. Variable	.55	.JJ	.30	.30	.51	.51	.50	

Environmental Impact


	A4.Additional Results		
	00000000000		

Carbon Emission Robustness

	A4.Additional Results		
	0000000000		

Environmental Impact

Environmental Impact

	A4.Additional Results 000000000●		

Second Hand Cars

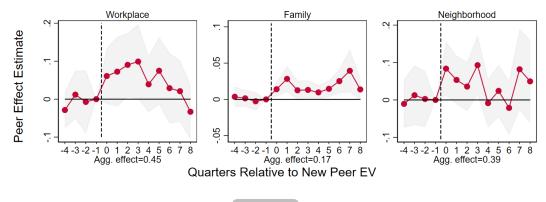
	OLS	First Stage	Seco	ond Stage
	(1)	(2)	Total(3)	Per Capita(4)
A.Workplace Network				
Peer Coefficient	.0115*** (.0041)	1.1319*** (.0816)	0010 (.0193)	0000 (.0004)
%-Effect	78.97	7760.88	-6.9	-6.9
Mean Dep. Variable	.015	.015	.015	0
B.Family Network Peer Coefficient %-Effect	.0021*** (.0003) 152.37	1.1695*** (.0169) 86802.34	.0039 (.0063) 289.26	.0008 (.0012) 289.26
Mean Dep. Variable	.001	.001	.001	0
C.Neighborhood Netwo	rk			
Peer Coefficient	.0219*** (.0018)	1.4960*** (.1029)	.0145 (.0244)	.0001 (.0001)
%-Effect	30.03	2053.03	19.91	19.91
Mean Dep. Variable	.073	.073	.073	0
Mean Dep. Variable		.073 Imental Impact	.073	0

				A5.Robustness		
00000000000000000	000	000000000	0000000000	000000	00	00

Alternative Specifications

		A. Workplace	2		B. Family		C	. Neighborho	bc
	OLS(1)	FS(2)	2SLS(3)	OLS(4)	FS(4)	2SLS(6)	OLS(7)	FS(8)	2SLS(9)
Peer Effect Estimate:									
Baseline	.0274***	1.1319***	.0771***	.0060***	1.1695***	.0140***	.0594***	1.4960***	.1114***
	(.0061)	(.0816)	(.0281)	(.0005)	(.0169)	(.0049)	(.0023)	(.1029)	(.0298)
Estimation Model:	()	()	· · ·	()	()	()	· · ·	· /	()
Probit	.1554***	1.1319***	.0896	.3602***	1.1695***	1.1134***	.1074***	1.4960***	.1059**
	(.0163)	(.0816)	(.1345)	(.0176)	(.0169)	(.1923)	(.0035)	(.1029)	(.0460)
Functional Form:	. ,	. ,		. ,	. ,	. ,	. ,		. ,
Percentage Influence	.0060***	.9897***	.0394***	.0001***	1.122***	.0001***	.0887***	1.1767***	.0325***
	(.0014)	(.0743)	(.0105)	(.0000)	(.0327)	(.0000)	(.0023)	(.0758)	(.0150)
Binary Influence	.0098***	.9960***	.0021***	0037*	.9998***	0002	.0215***	.9829***	0118**
	(.0013)	(.0002)	(.0003)	(.0019)	(.0002)	(.0006)	(.0017)	(.0005)	(.0005)
Alternative Outcomes:									
Non-Leased	.0156***	1.1319***	.0133	.0036***	1.1695***	0016	.0355***	1.4960***	.0451**
	(.0031)	(.0816)	(.0160)	(.0004)	(.0169)	(.0028)	(.0017)	(.1029)	(.0214)
Non-Renewal	.0273***	1.1319***	.0742***	.0059***	1.1695***	.0150***	.0570***	1.4960***	.1032***
	(.0061)	(.0816)	(.0261)	(.0005)	(.0169)	(.0047)	(.0022)	(.1029)	(.0292)
Sample Restriction:									
Peer Leasing	.0404***	1.0937***	.0802*	.0087***	1.1469***	.0115	.0607***	1.4371***	.1419***
	(.0124)	(.0824)	(.0415)	(.0018)	(.0171)	(.0075)	(.0031)	(.1036)	(.0421)

Robustness Checks


				A5.Robustness		
00000000000000000	000	000000000	0000000000	000000	00	00

Non-overlapping Networks

	OLS	First Stage	Second Stage	
	(1)	(2)	Total(3)	Per Capita(4)
A.Workplace Network				
Peer Coefficient	.0264*** (.0060)	1.1271*** (.0816)	.0747*** (.0278)	.0017*** (.0006)
%-Effect	190.74	8142.2	539.8	539.8
Mean Dep. Variable	.014	.014	.014	0
B.Family Network				
Peer Coefficient	.0039*** (.0003)	1.1680*** (.0170)	.0092*** (.0034)	.0026*** (.0010)
%-Effect	390.73	115713.58	912.12 [´]	912.12 [´]
Mean Dep. Variable	.001	.001	.001	0
C.Neighborhood Networ	k			
Peer Coefficient	.0594***	1.4960***	.1114***	.0004***
	(.0023)	(.1029)	(.0298)	(.0001)
%-Effect	80.26	2022.11	150.64	150.64
Mean Dep. Variable	.074	.074	.074	0

		A5.Robustness	
		000000	

Constant Networks

Robustness Checks

		A5.Robustness 000●000	

Placebo Peers

	OLS	First Stage	Seco	ond Stage
	(1)	(2)	Total(3)	Per Capita(4)
A.Workplace Network				
Firm Co-worker	0001 (.0031)	5.5945*** (.8057)	.0100 (.0149)	.0000 (.0000)
%-Effect	09	4989.44	`8.94´	`8.94´
Mean Dep. Variable	.112	.112	.112	0
Future Co-worker	.0006 (.0005)	.8052** (.3979)	0309 (.0216)	0051 (.0035)
%-Effect	34.11	42337.59	-1626.53	-1626.53
Mean Dep. Variable	.002	.002	.002	0
C.Neighborhood Networ	·k			
Distant Neighbor	.0408***	1.4983***	.0595	.0001
0	(.0039)	(.0869)	(.0540)	(.0001)
%-Effect	`17.37 [´]	637.32	216.7Í	216.71
Mean Dep. Variable	.235	.235	.235	0

Robustness Checks

		A5.Robustness	
		0000000	

Placebo Contract Renewal

	OLS	First Stage	Seco	ond Stage
	(1)	(2)	Total(3)	Per Capita(4)
A.Workplace Net	work			
Prior Renewal	.1482 (.0546)	8647 (2.3967)	0107 (.0281)	0002 (.0004)
Past Renewal	.0559 (.0421)	0345 (.3644)	0082 (.0115)	001 (.0002)
B.Family Networl	<			
Prior Renewal	.0019 (.0055)	.0153 (.0008)	0.0058 (.0359)	.0000 (.0311)
Past Renewal	.0200 (.0126)	.0609 (.0036)	0430 (.1305)	0057 (.0172)
C.Neighborhood	Network			
Prior Renewal	.0019 (.0055)	.0153 (.0008)	0.0195 (.0239)	.0000 (.0311)
Past Renewal	.0200 (.0126)	.0609 (.0369)	0430 (.1305)	0057 (.0172)
		Robustness Checks		

		A5.Robustness 00000●0	

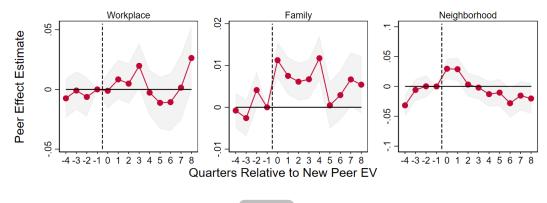
Control Group

	OLS	First Stage	Seco	ond Stage
	(1)	(2)	Total(3)	Per Capita(4)
A.Workplace Network				
Control Group: Non-Renewal	.0272***	1.1885***	.0811***	.0018***
	(.0061)	(.0975)	(.0303)	(.0007)
Control Group: Fossil Fuel Veh.	.0271***	1.0246***	.0902***	.0020***
	(.0060)	(.0823)	(.0318)	(.0007)
B.Family Network				
Control Group: Non-Renewal	.0060***	1.2668***	.0122**	.0024**
	(.0005)	(.0220)	(.0050)	(.0010)
Control Group: Fossil Fuel Veh.	.0060***	1.2450***	.0098*	.0019*
	(.0005)	(.0176)	(.0050)	(.0010)
C.Neighborhood Network				
Control Group: Non-Renewal	.0588***	1.5731***	.1011**	.0004**
	(.0032)	(.1075)	(.0435)	(.0002)
Control Group: Fossil Fuel Veh.	.0592***	1.4847***	.1110**	.0004**
	(.0033)	(.1032)	(.0435)	(.0002)
Robustness Checks	Inter	pretation of Treatn	nent Effect	

		A5.Robustness	
		0000000	
1			

Varying Horizon

	OLS	First Stage	Second Stage
	(1)	(2)	(3)
A.Workplace Network			
1 Quarter (baseline)	.0274***	1.1319***	.0772***
, , , ,	(.0061)	(.0816)	(.0282)
2 Quarter	.0250***	1.3421***	.0534***
	(.0063)	(.0904)	(.0175)
3 Quarter	.0239***	1.5025***	.0489***
	(.0057)	(.1047)	(.0128)
4 Quarter	.0236***	1.6095***	.0506***
	(.0054)	(.1139)	(.0113)
3.Family Network			
1 Quarter (baseline)	.0060***	1.1695***	.0140***
. ,	(.0005)	(.0169)	(.0049)
2 Quarter	.0054***	1.2424***	.0367***
	(.0003)	(.0171)	(.0069)
3 Quarter	.0052***	1.2871***	.0397***
	(.0003)	(.0178)	(.0056)
4 Quarter	.0051***	1.3246***	.0427***
	(.0002)	(.0183)	(.0049)
C.Neighborhood Networ	rk		
1 Quarter (baseline)	.0594***	1.4960***	.1115***
,	(.0023)	(.1029)	(.0298)
2 Quarter	.0457***	1.7038***	.0784***
	(.0017)	(.1089)	(.0174)
3 Quarter	.0320***	1.9240***	.0592***
	(.0014)	(.1361)	(.0121)
4 Quarter	.0192***	2.0704***	.0523***
	(.0012)	(.1533)	(.0103)
R	obustness		(.)


		A6.Peer Cars	
		0	

Estimation Results

	OLS	First Stage	Second Stage	
	(1)	(2)	Total(3)	Per Capita(4)
A.Workplace Network				
Peer Coefficient	.0336*** (.0021)	.3682*** (.0080)	0011 (.0076)	0000 (.0002)
%-Effect	15.91	174.44	`53´	53
Mean Dep. Variable	.211	.211	.211	.005
B.Family Network				
Peer Coefficient	.0103***	.3297***	.0086***	.0017***
	(.0002)	(.0010)	(.0022)	(.0004)
%-Effect	47.97	1537.2	40.13	40.13
Mean Dep. Variable	.021	.021	.021	.004
C.Neighborhood Networ	ĸ			
Peer Coefficient	.0348***	.4104***	.0334***	.0001***
	(.0015)	(.0111)	(.0099)	(.0000)
%-Effect	` 3.25 ´	38.35	3.12	3.12
Mean Dep. Variable	1.07	1.07	1.07	.004

		A6.Peer Cars	
		00	

Peer Dynamics

			A6.Framework ●O
Pigou Model			

The optimal Pigouvian subsidy that accounts for peer effects $\tau^*(\theta^e)$ relative to a standard Pigouvian subsidy is given by the ratio of externalities with and without peer effects:

$$\frac{\tau^*(\theta^e)}{\tau^*} = \frac{e(\theta^e)}{e}$$

$$\frac{\tau^*(\theta^e)}{\tau^*} = \frac{\sum_{j=1}^{J} [e_j(V^e) - e_j(V^c)] \cdot (1 + \theta^e)}{\sum_{j=1}^{J} [e_j(V^e) - e_j(V^c)]}$$

$$\tau^*(\theta^e) = \tau^* \cdot (1 + \theta^e)$$

$$\tau^*(\theta^e) = e \cdot (1 + \theta^e)$$
(9)

Pigou Subsdiy

If we incorporate the peer effect of electric cars on the adoption of fossil fuel cars θ^c , the optimal Pigouvian subsidy becomes:

$$\frac{\tau^*(\theta^e)}{\tau^*} = \frac{\sum_{j=1}^J [e_j(V^e) - e_j(V^c)] \cdot (1 + \theta^e - \theta^c)}{\sum_{j=1}^J [e_j(V^e) - e_j(V^c)]}$$

$$\tau^*(\theta^e) = \tau^* \cdot (1 + \theta^e - \theta^c)$$

$$\tau^*(\theta^e) = e \cdot (1 + \theta^e - \theta^c)$$
(10)

Modified Pigou